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ABSTRACT 
 
A micromechanical model is developed for composite  

materials with distinct material domains that differ in length 
scales. Representative volume elements (RVEs) of a 
nanofiber-filled polymer are generated for finite element 
simulations using AbaqusTM software. A stochastic method 
is developed to create 3D RVEs that statistically represent 
the high aspect ratio nanofiber composites.  Thermo-
mechanical properties for a particular system are computed 
and found to be comparable to the Cox-Krenchel model and 
to experiments. The model is extended to include a rubber 
domain that is 20 times greater than the nanofiber diameter. 
The results are compared to the binary system using linear 
material models. Advanced material models are then used 
to establish relationships between fiber dispersion 
microstructure (fiber dimension, orientation, and degree of 
loading) and resulting thermo-mechanical properties 
(modulus and thermal expansion coefficient) in the ternary 
system. 
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1 INTRODUCTION 
 
Nanofibers have emerged as promising polymer 

additives because of their potential to enhance thermo-
mechanical properties of the polymer more efficiently than 
conventional filler materials such as glass fiber and talc. 
While these compounds have the potential to be the next 
generation light-weight structural plastic materials, many 
critical physical properties like modulus, toughness, heat 
distortion temperature and thermal expansion coefficient, 
are quite sensitive to the filler compositions and processing 
(mixing) conditions. Contolling the processing conditions 
remains an industrial challenge, but there is strong potential 
to design materials based on the microstructure of the fillers 
(including chemical structure and shape, as well as degree 
of dispersion within the continuous phase) that will exhibit 
desired physical properties. The fundamental relationship 
between the composite microstructure (orientation, 
dispersion, and dimensions of the filler phase) and the 

thermal and mechanical properties must be understood in 
order to implement a rational material design strategy. 

In this work, micromechanical models of polymer-
nanofiber and polymer-rubber-nanofiber systems have been 
developed to compute the modulus, coefficient of linear 
thermal expansion (CLTE) and heat distortion temperature 
using a commercial non-linear finite element code. These 
micromechanical models were used to establish a 
quantitative structure-property relationship between the 
fiber microstructure (fiber dimension, orientation, degree of 
loading) and the resulting composite properties and to guide 
material design for structural applications.  

 
2 MICROMECHANICAL MODEL 

 
High aspect ratio nanofibers present a computational 

challenge for finite element simulations because the mesh 
size must be smaller than the smallest length scale of 
interest. To overcome this computational burden, 
representative volume elements are generated stochastically 
with periodic boundaries as discussed in detail below. 

 
2.1 Stochastic representative volumes 

In order for the model “unit cell” to be statistically 
representative of a real polymer-nanofiber composite, a 
stochastic method is developed to generate 3D RVEs.  
Linear fibers are placed inside the RVE according to a 
prescribed statistical distribution (random, uniform or 
Gaussian) without overlap, allowing for fiber loadings that 
exceed the theoretical upper limit derived from a 2D 
random planar fiber orientation. Due to the fibers’ high 
aspect ratio (AR), the resulting RVEs are non-cubic with 
periodic boundary conditions. The minimum required RVE 
dimensions were determined iteratively based on 
convergence of the computed tensile modulus values. Fig. 1 
shows examples of RVEs developed for the 
polymer/nanofiber binary system with varying fiber 
oreintations and loadings.  

 
2.2 Material models 

For the binary polymer/nanofiber systems, all materials 
are assumed to follow a linear constitutive equation (=E) 
where the stress, , is proportional to the strain, , and the 
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Figure 1: Optimized 3D representative volumes for the 
binary polymer (grey) /nanofiber (green) composite.(a) 3D 
random fiber orientation with fiber angles chosen from a 
spherical distribution. (b) 2D random in-plane fiber 
orientation with fiber angles chosen from a gaussian 
distribution with a mean of 0°(planar) and variance of +/-
5°. 

Young’s modulus, E, is the proportionality constant. 
Experimentally measured tensile modulus and Poisson’s 
ratio (=-dtrans/daxial) of the pure components are used as 
inputs for the tensile modulus simulations of the composite 
materials.  

The ternary polymer/nanofiber/rubber simulations have 
the option of using either all-elastic material models 
described above or advanced nonlinear material models for 
the polymer and rubber components. The advanced material 
model for the polymer treats the polymer as a viscoelastic 
material and experimentally measured stress relaxation 
curves are fit to the 3-network model [1]. The material 
model is calibrated with the PolyUMod library developed 
by Veryst Engineering LLC that runs under AbaqusTM finite 
element software. The 3-network model has been shown to 
reproduce measured stress-strain curves in cyclic loading 
experiments for polymers of interest. 

The rubber phase of the micromechanical model can be 
treated as a nonlinear viscoplastic material using the 
Bergstrom-Boyce model [2]. The Bergstrom-Boyce model 
accurately predicts stress-strain behavior of elastomeric 
materials even at high strains (>6). 
 
2.3 Finite Element Analysis 

To compute the tensile modulus of each RVE, Ei, the 
RVE is  subjected to a uniaxial strain of 0=0.001in axial 
and transverse directions using the AbaqusTM finite element 
software. The tensile modulus is computed as the ratio of 
stress to strain. The coefficient of linear thermal expansion 
(CLTE, =(1/l)dl/dT) is computed for each RVE in the 
axial (a,i) and transverse (t,i) directions after being 
subjected to a temperature increase from 273K to 283K. In 
this case, the experimentally measured CLTE of the 
polymer is used as an input, and the CLTE of the fibers is 
assumed to be zero.  

A total of N RVEs with identical dimensions and 
statistical fiber distributions but with different fiber 
microstructures are considered to be in the same RVE class. 
The computed thermo-mechanical responses of these 
composites are statistically averaged over responses from 

all the RVEs within one class so an average material 
response can be computed as 


Ni i NAA

,1
/ . This 

approach computes average properties without suffering 
from convergence issues associated with finite element 
deformation simulations of larger RVEs. The minimum 
number of RVEs, N, required to achieve reasonable 
standard errors in the mean values of the averaged moduli 
and CLTE differs for each RVE class, but is around N=100 
for all cases presented here.  
 

3 COX-KRENCHEL MODEL 
 
For linear materials, a simple rule-of-mixtures semi-

empirical model may be used to predict the compound 
modulus and thermal expansion. The Cox-Krenchel (CK) 
model [3,4] for discontinuous fiber-filled materials has been 
shown to give reasonable approximations for nanofiber-
filled polymer systems [5] and is given by: 
 

 , 1 fmfflc vEvEE    (1) 
 

where E is the modulus, v is the volume fraction and the 
subscripts c, f, and m correspond to the composite, fiber 
and matrix, respectively. The fiber correction factors 
account for the finite length of the fibers (l) and the 
average fiber orientation () as described in Ref. 3. 

The CLTE has been derived in Ref. [6] for an isotropic 
continuous fiber and matrix composite system. The Cox-
Krenchel approach has been used to generalize the CLTE to 
account for discontinuous fibers [7] and the fiber 
orientation [8] to give:  

 
, )/Evv( cmmmffflxy EE     (2) 

 
for expansion in the axial directions, and  

 
    xycmmmfffz ν ,αναν   v1v1  (3) 

 
for expansion in the transverse direction where xy is the 
axial plane, z is the transverse direction,  is Poisson’s ratio 
and  is the linear expansion coefficient. All pure 
component properties in the CK equations are computed 
from experimental measurements. For the results presented 
here, the fibers are assumed to be in a 2D planar orientation 
to give =3/8 and l is computed from the fiber 
dimensions supplied by the vendor. 

 
4 RESULTS 

 
Tensile modulus and thermal expansion coefficients are 

computed as a function of nanofiber concentration and 
compared to experimental results measured from nanofiber 
(NF1, AR=40) reinforced polymer nanocomposites. The 
results are compared to the CK equations for non-

(a) (b) 
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continuous fiber-reinforced systems to validate the  
simulation protocol. Systematic studies with a different 
nanofiber (NF2, AR=700) are presented to evaluate the 
impact of the materials choice on composite properties. 
Rubber domains are added to NF1-polymer 
nanocomposites  to screen for desired material properties in 
the ternary system.  

 
4.1 Polymer-nanofiber system 

Composite modulus and CLTE of the binary system are 
computed using the finite element method described above 
assuming linear material properties and perfect bonding 
between the polymer matrix and the nanofibers. Fig. 2 
compares the results to those obtained from the Cox-
Krenchel model and experimentally measured values for 
the Polymer/NF1 system. Fig. 2a compares the modulus as 
a function of nanofiber loading. The RVE snapshots in Fig. 
2c show the Mises stresses in the fibers after deformation in 
the axial (left) and transverse (middle) directions. The 
snapshots clearly show that stress is transferred from the 
polymer to the stiffer nanofiber effectively when fibers are 
aligned in the strain direction, but there is essentially no 
stress transferred in the fiber’s radial direction during 
transferse deformation. This is consistent with the 
computed composite moduli: for 2D planar systems, the 
modulus is higher in the axial direction than in the 
transverse direction for all fiber loadings.  The Cox-
Krenchel model’s overprediction of the composite modulus 
increases with fiber loading. This is likely due to non-
ideality of the experimental system including the 
assumptions of 2D planar fiber orientation and perfect fiber 
dispersion. The FEA simulation results are lower than what 
is predicted by the Cox-Krenchel model and they accurately 
predict the composite modulus within experimental error. 
In the FEA simulation the fibers within the RVE are not 
perfectly planar: there is a Gaussian distribution of fiber 
orientations with a planar mean, but a variance of 5 
degrees. This fiber orientation is more realistic and thus 
agrees better with experiment. However, the moduii 
computed from the FEM simulations are systematically 
higher than experiment. This can be attributed to fiber 
aggregation in the real system that disallows full transfer of 
stress from the matrix to the individual fibers. In some 
systems, high AR nanofibers have been observed to curve 
within the matrix, further decreasing the load transfer under 
axial strain. This was not observed experimentally for the 
NF1 compounds. 

Eqns. 2 and 3 are used to compute CLTE for a 2D 
planar NF1/polymer system and the results are shown in 
Fig. 2b. The results are consistent with those of the 
computed modulus in Fig. 2a. The Cox-Krenchel model 
systematically underpredicts the experimenally measured 
CLTE for all fiber loadings, and the FEM results are 
comparable to the experimental results at low loadings. 
Deviations are attributed to the assumptions of 2D planar 
fiber orientation in the CK model and perfect dispersion in 

the model and the simulations.  A snapshot of the 
distribution of Mises stresses after thermal loading is shown 
in Fig. 2d. 

 

 
 

 
Figure 2: (a) Composite modulus of NF1/polymer system in 
the axial direction (squares, along fiber axis) computed 
from the CK model (red squares, for random 2D fiber 
orientation), experimentally measured (green squares, from 
flexural modulus test), and from FEM simulations (black 
squares). The modulus in the transverse direction computed 
from FEM (black circles, transverse to fiber axis) is also 
shown. (b) Coefficient of linear thermal expansion (CLTE) 
of NF1/polymer system. FEM results at T=279K (black 
squares) underestimate expansion in the machine direction 
when compared to experimental values at T=240K (green 
squares). Expansion in the normal direction is predicted by 
FEM to be greater than in the machine direction (black 
circles). (c) The distribution of Mises stresses in the fibers 
in one representative RVE at 40 wt% fiber loading is shown 
below for transverse (left) and axial (middle) deformations. 
(d) Mises stress distribution in the fibers upon a thermal 
deformation at 40 wt% fiber loading.  
 

Fig. 3 shows the results comparing different nanofiber 
composites within the same polymer matrix. While NF2 
(AR=700) performs better in the FEM simulations than 
NF1 (AR=40), the experimental results deviate from the 
simulations much more than the NF1 system. This is likely 
because the high AR NF2 fibers are more curved or broken  
during mixing so that the full load-transfer potential of the 
NF2 system cannot be achieved in reality.   

 

 
Figure 3: Composite modulus of NF1/polymer (green is 
experimental data, black is FEM results)  and NF2/polymer 

(b) (a) 

(c) (d) 
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systems (purple is experimental data and grey is FEM 
results) in axial (squares) and transverse (circles) directions.  
 
4.2 Polymer-nanofiber-rubber system 

Comparing the FEM simulation results to a model that 
has been previously verified and to experimental results of 
a comparable binary system serves to validate the 
simulation protocol and quantify the errors associated with 
the assumption of single fiber dispersion. The simulation 
protocol is now used to predict thermal and mechanical 
behaviors of more complex systems that cannot be 
adequately described by simple theories. 

Rubbers have been experimentally added to the system 
to enhance the material’s impact properties. However, the 
low-modulus rubber is expected to lower the overall 
stiffness and thermal stability of the material. The extent to 
which the material properties are affected by inclusion of a 
rubber phase depends on the nanofiber distribution within 
the polymer and rubber phases. The binary 
nanofiber/polymer stochastic RVE method described in 
Sec. 2 has been extended to include a rubber phase where 
the rubber dispersion diameters are significantly greater 
than the diameters of nanofibers studied. The large rubber 
domains pose a challenge to model the nanofibers (diameter 
~100 nm) and the rubber (domains ~2 microns) within the 
same volume element. To resolve this, one quadrant of the 
rubber particle is modeled as 1/8 of an ellipsoid in the 
corner of the RVE, as shown in Fig. 4. 

 

 
Figure 4: 3D representative volume element for the ternary 
polymer (grey) /nanofiber (green)/rubber (red) composite. 
Fibers are planarly oriented with a variance of 5 degrees 
and are excluded from the rubber domain in this example. 

 
The moduli of the ternary nanofiber-rubber-polymer system 
(FRP) is plotted as a function of fiber loading in the 
polymer phase in Fig. 5. The fibers have the same statistical 
distribution as in Fig. 2, but they are excluded from the 
rubber phase. Since the rubber cannot be adequately 
described by a linear material model, even at low strains, 
nonlinear material models described in Sec. 2.2 are used. 
Fig. 4 compares the modulus computed from  nonlinear and  
linear material model systems. Even for low strain (=.001), 
the nonlinear models compute a lower composite modulus 
in both axial and transverse directions for all fiber loadings. 
 

 
Figure 5: Computed modulus of ternary fiber-rubber-
polymer (FRP) system with linear material properties 
(orange) and nonliinear material properties defined in Sec. 
2.2 (blue) in axial (filled squares) and transverse (open 
squares) directions. Results are for 2D planar fiber 
orientation with a 5 degree variance about the mean of zero 
and perfect bonding between all phases.  
  

5 CONCLUSIONS 
 
A new stochastic method to generate RVEs for finite 

element simulations of nanofiber polymer composites has 
been developed. The protocol has been validated by 
comparing the computed tensile modulus and CLTE to 
experimental values and to the Cox-Krenchel model. The 
model has been extended to include a rubber phase whose 
dimensions are 20 times larger than the nanofiber 
diameters, and realistic material models for all three 
components. The non-linear constitutive models will allow 
for accurate simulations even at high strains. At sufficiently 
high strains, fiber pull-out has been observed 
experimentally. The FEM algorithm can account for fiber-
pull out and imperfect bonding between the rubber and 
polymer phases phenomenologically by specifying a 
particular strain at which the bond strength goes from 100% 
to 0% instantaneously. Results from these parametric 
studies are ongoing and represent a significant opportunity 
to gain qualitative understanding on how interfacial 
interactions affect key mechanical and thermal properties of 
the ternary nanocomposites.  
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