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ABSTRACT 

 Departing from statistical methods, we examine large-
scale genomic and proteomic data by applying spectral 
estimates and measures such as energy, power and cross-
spectral densities. The frequency analysis and spectral 
methods have significant advantages, guarantee robustness, 
enable consistent quantitative analysis and provide 
qualitative features. The symbolic and numeric approaches 
provide the overall coherency. The frequency-domain 
analysis necessitates one to use numeric mappings of finite 
sequences. Though additional studies and consistent 
evaluations are needed to assess the proposed methodology, 
we demonstrate promising consistency, data cohesiveness 
as well as the genomic and proteomic correlations. 
Regression analysis and classifications can be achieved 
under large uncertainties (gaps, errors, missing sites, 
inconsistency, etc.). The analysis of sequences and 
information complexity requires a great number of 
assumptions, hypotheses and postulates. We minimize the 
number of assumptions applied. The results are illustrated 
for HIV, cancer and other sequences.  
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1. INTRODUCTION 
 The large-scale genomics and proteomics are the 
forefront of medicine, life science and engineering. Current 
developments in genomics and proteomics promise one to 
identify and characterize genes, RNA, and proteins thereby 
enabling system biology, biotechnology and medicine [1, 
2]. It is important to understand how genotype leads to 
phenotype, how an organism responds to the environment, 
and other open questions. Different statistical methods were 
used to analyze and evaluate large-scale data by performing 
data analysis and data mining. These attempts were 
partially successful due to overall complexity, sequences 
gaps, nonconding low complexity regions, inaccuracy, etc. 
The use of statistical methods in analysis of large-scale 
data, produced by high-throughput experiments, has 
limitations and drawbacks [1, 2]. 
 Genome sequences for different organisms are 
available. In particular: (1) GenBank (USA), DDBJ (Japan) 
and EMBL databases provide nucleic acid sequences; (2) 
PIR and SWISS-PROT databases report protein sequences; 
(3) Protein Data Bank providesrs protein structures. 
Enabling databases were developed. For example, the 
SCOP, CATH and FSSP databases classify proteins based 

on structural similarity. The protein families were identified 
based on sequence homology applying Pfam and ProtoMap 
classifiers. The PartList and GeneCensus databases and 
classifiers examine the occurrence of protein families in 
various genomes.  
 Statistical methods test a priori hypotheses against data 
with a great number of assumptions and postulates under 
which the genome-genome comparison can be performed. 
The “learning” methods (clustering, Bayesian networks, 
decision trees, neural networks and other) were used to 
study trends and patterns in the large-scale data within 
moderate progress [1, 2]. We propose a frequency-domain 
approach which leads to the spectral analyses with 
consistent estimates and measures. This concept promises 
to ensure robust, systematic and consistent analysis [3, 4]. 
The proposed approach complies with conventional data 
formats and complements other methods ensuring 
assessment of complex large-scale data under uncertainties. 
The qualitative and quantitative analyses are performed for 
various sequences, including HIV and cancer genomes. 
 

2. SPECTRAL ANALYSIS AND ITS APPLICATION 
 To perform analysis of various sequences we formulate 
the following postulate. 

Postulate. The quantifying data (relative information 
content) is coded, and, the descriptive features are defined 
as a finite sequence of nucleotides or amino acids in the 
genomic and proteomic sequences. These finite ensemble 
sequences are distinguishable and provide unique 
characteristics on identifiable quantities. Hence, the 
frequency-domain concept with the resulting spectral 
estimates and measures is applicable and consistent.        ■ 

Let A={A, C, G, T} is the symbolic quaternary 
alphabet. This alphabet can be mapped (represented) as  
     M={0 1 2 3}, M={j  –j  1  –1}, M={1+j  –1+j  1–j  –1–j}. 

Other mappings can be used. The arbitrary pairs of 
quaternary N-sequences (words of length N) are 

x=(x1,x2,…,xN–1,xN),xi∈A and y=(y1,y2,…,yN–1,yN), yi∈A.  
For a pair (x,y) of quaternary words, the statistical 

measures and similarity ∑
=

=
N

i
ii yxsyxS
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),(),(  and entropy 

can be found. For N objects (symbols) Xi which have 
probability distribution functions p(Xi), the entropy is 

∑
=
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N
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2 )(log)()( , i=1,2,.…,N–1,N. We depart 

from these approaches which have a limited practicality. 
Consider a finite sequence of nucleotides A, T, C and 

G. We assign the symbol or values a, t, c and g to the 
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characters A, T, C and G. These a, t, c and g can be mapped 
by real and complex mappings. The numerical sequence, 
resulting from a character string of length N, is 
  x[n]=auA[n]+tuT[n]+cuC[n]+guG[n], n=0,1,2,…,N–1, 
where uA[n], uT[n], uC[n] and uG[n] are the binary indicators 
which take the value of either 1 or 0 at location n depending 
on whether the corresponding character exists or not at 
location n; N is the length of the sequence. 

The amino acid sequences are expressed as 
 x[n]=AlauAla[n]+ArguArg[n]+…+TyruTyr[n]+ValuVal[n]. 

Using the amino acids, the symbolic alphabet is 
A={Ala,Arg,…,Tyr,Val} with the corresponding alphabet 
mapping. The amino acid sequence is 
 x[n]=aua[n]+rur[n]+…+tut[n]+vuv[n]. 

We obtain the symbolic strings which map nucleotides 
and amino acids finite sequences. The discrete Fourier 
transform of a sequence x[n] of length N is  
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, k=0,1,2,.…,N–1. 

This Fourier transform provides a measure of the 
frequency content at frequency k which corresponds to a 
period of N/k samples. The sequences UA[k], UT[k], UC[k] 
and UG[k] are the discrete Fourier transforms of the binary 
indicators uA[n], uT[n], uC[n] and uG[n]. The finite genomic 
and proteomic sequences are distinguishable and may 
provide unique characteristics identifiable and observable in 
the frequency domain. These characteristics and data may 
not be observable by statistical,”learning” or other methods. 

The energy spectral density (ESD) and power spectral 
density (PSD) associate with a stationary stochastic and 
deterministic functions and sequences. The aforementioned 
estimates are real-valued functions which represent the 
frequency content and identify periodicity. 

The energy spectral density describes how the energy 
(or variance) of x(t) or x[n] vary as a function of frequency. 
If x(t) is a finite-energy square-integrable functions, the 
spectral density Φ(ω) of x(t) is the square of the magnitude 
of the continues Fourier transform X(ω), e.g.,  
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where X(ω) is the Fourier transform of x(t), 
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 The energy in x(t) is ∫
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called the energy density spectrum. 
 Using the truncated x(t) in [–½T  ½T], the average 
power is given as  
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where S(ω) is the power spectral density. 

For a sequence x[n], over an infinite number of 
elements, one has an energy spectral density as 
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To obtain the ESD, we assume that the continuous and 
discrete Fourier transforms exist. This implies that x(t) and 
x[n] must be integrable (square-integrable) and summable 
(square-summable). To relax these requirements, the PSD is 
applied. The PSD is the Fourier transform of the 
autocorrelation function Rxx(τ), and 
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The cross spectral density is the Fourier transform of 
the cross-covariance function. In particular, for x and y one 

has ∑
∞

−∞=

−=
n

nj
xyxy eRP ω

π
ω

2
1)( . 

The ensemble average of the average periodogram 
when T→∞ is  
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where E is the expectation operator. 
The PSD is a linear function of the auto-covariance and 

defines the variance. Furthermore, the power spectrum G(x) 

is ∫
∞−

=
x
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Example 2. 1: Cross-Spectral Density 
The proposed concept allows one to derive the cross-

spectral density (CSD) function between two finite 

sequences as ∑
∞

−∞=

−=
m

mj
xyxy emRS ωω )()( .  

While ESD and PSD are real-valued, the CSD is a 
complex functions. For finite x[n] and y[n] with different 
length, one may derive the confidence interval, and a 
coherent CSD is derived with a probability p.        ■ 

Example 2.2: Robust Analysis of Sequences 
in the Frequency Domain 

We apply the Fourier transform and examine the 
frequency components of a perfect nucleotide sequence 
x[n], as well as x[n] under uncertainties. The symbolic 
quaternary alphabet A={A,C,G,T} is mapped as M={0 1 2 
3}. Figure 1.a reports a fragment of the studied x[n]. The 
magnitude of Fourier transform |X[k]| indicates that there 
are four distinguished frequencies. Under uncertainties 
(gap, error, missing site, inconsistency, etc.), consider the 
sequence xξ[n] which is documented in Figure 1.b. The 
comparison of resulting |X[k]| for x[n] and x[n] indicates 
significant quantitative changes. However, the dominant 
frequencies can be identified, matching and similarity can 
be established, and, the sequence can be detected. Thus, 
data mining features are established. 

The uncertainties (gap, error, missing site, 
inconsistency, etc.) are mapped by U. Let the uncertainties 
occur at 10, 25 and 40 sites. The gaps and inconsistencies 
can be mapped as U={–1 –2 …}. Let U={–1} with the 
resulting x[n] as illustrated in Figure 1.c. The calculated 
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|X[k]| is given in Figure 1.c. Thus, the frequency concept 
allows one to perform the analysis under very large 
uncertainties. Analysis of results and |X[k]| allows us to 
conclude that the proposed concept ensures robustness, 
detection, observability, data mining and other features 
under large uncertainties. The qualitative and quantitative 
estimates correspond to a perfect sequence. The statistical 
methods may not provide relevant estimates and measures. 
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(c) 
 Figure 1. Nuceleotides mappings and Fourier transforms: 
 (a) Perfect nucleotide sequence: Mapping x[n] and |X[k]|; 
 (b) xξ[n] with errors and corresponding |X[k]|; 
 (c) x[n] with large uncertainties and resulting |X[k]|     ■ 
 

 

3. APPLICATIONS AND RESULTS 
The frequency-domain analysis was performed for 

complete E.coli and S.typhimurium genomes with 
4,639,221 and 4,937,381 base pair strains in [3, 4]. An 
interactive toolbox is developed in MATLAB to accomplish 
a robust frequency-domain analysis. The sequences may not 
be complete, there can be missed sites, etc. The HIV and 
cancer genes are typical examples [5, 6]. It is virtually 
impossible to analyze patterns using statistical and 
“learning” methods. Furthermore, linear maps may not be 
found. In contrast, the reported concept is effectively 
applied providing meaningful results.   

We perform the spectral analyses using ESD, PSD and 
other measures and estimates. Various parametric 
(autocorrelation, covariance, etc.), non-parametric 
(periodogram, Welch, etc.) and space methods are applied 
and utilized to obtain PSD. Figures 2 and 3 illustrate the 
PSDs for the nucleotide and amino acid sequences for HIV 
and cancer genes. The frequency analysis promises to solve 
a spectrum of problems such as: (1) Detect, identify and 
distinguish proteins and genes; (2) Examine and identify 
protein coding genes; (3) Potentially define structural and 
functional characteristics; (4) Analyze the data and perform 
data mining; (5) Identify patterns in gene sequences; (6) 
Enable classification; etc. 

Thomson Multiplier 

  
Welch method 

  
Autocorrelation method 

  
Eigenvector method 

  
Figure 2. Power Spectral Density for the HIV sequence 

using amino acid and nucleotide sequences  
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Thomson Multiplier 

  
Welch method 

  
Autocorrelation method 

  
Eigenvector method 

  
Figure 3. Power spectral density for the cancer sequence 

using amino acid and nucleotide sequence 
 

 One can examine spectral leakage, resolution, variance, 
modes, coherence and other spectral estimates and measures 
even over short or inadequate sequences. A data-intensive 
large-scale study of proteins may be quantitatively and 
qualitatively examined using the proposed approach. The 
protein structures and functionality can be potentially 
classified and identified. The proteomic analysis is more 
complex due to protein diversity and protein-protein 
interactions [1, 2]. While a genome does not evolve, a 
proteome differs from cell to cell and undergo changes 
(modifications, degradations, etc.) through various 
transitions, interactions and events with the genome and the 
environment. The number of proteins is much higher than 

genes. The increased complexity motivates the development 
of alternative approaches. The solution of this problem will 
affect the discovery of biomarkers, disease treatments, 
diagnostics, etc. For example, the genome and proteome 
information can be used to identify or implicate proteins 
associated with a disease. Specific and customized drugs 
can be designed to interfere, refine or inactivate the protein 
functionality. Drugs were found to target and inactivate the 
HIV-1 protease (an enzyme that cleaves a very large HIV 
protein into smaller functional proteins). The proposed 
concept promises to enable the homology and matching 
analyses, data mining, protein-protein evolutionary 
matching, profiling, classification and other tasks using 
sequenced and unsequenced proteins from genomes. There 
are needs for further studies, assessments and evaluation. 

 
 

4. CONCLUSIONS 
We proposed solutions to important problems in robust 

quantitative genome and proteome analyses. Our approach 
contributes to bioinformatics by developing a consistent 
fundamental concept. The spectral-centric analyses were 
performed. Cmplex sequences and patterns were robustly 
described and examined under uncertainties. These analyses 
promise one to enable: (i) Pattern recognition; (ii) 
Classification; (iii) Identification; (iv) Prototyping, etc. The 
proposed approach is useful due to: (1) Robust homology 
search and detection with high accuracy under 
uncertainties; (2) Accurate data-intensive analysis and 
evaluation; (3) Analysis of multiagent pathways for multi-
genes; (4) Multifunctional analysis; (5) Computational 
efficiency and mathematical consistency; (6) Information 
extraction and information retrieval; (7) Large-scale 
capabilities using multiple databases; (8) Regressive and 
correlation analyses; etc. The proposed approach was found 
to be consistent, coherent, robust, compact and illustrative.  
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