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ABSTRACT 

 
 This paper studies single-molecule electronic devices in 
which quantum state transitions should be utilized to achieve 
processing tasks. Some biomolecules, molecules and 
supramolecules exhibit practical luminescence, photoelectric 
effects, photon absorption, resonance and other quantum 
effects. We study device physics using processable 
observables. The evolutions of observables must be controlled, 
and, the microscopic device controllability is studied.  
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1. INTRODUCTION 
 

Single-molecule microscopic devices and molecular 
processing fabrics are envisioned departing from conventional 
microelectronics [1]. These molecular inroads and solutions 
may emerge as progress will be achieved on many fronts. 
Despite debatable prospects on the engineering solutions and 
technology readiness, the major reasons to conduct research in 
single-molecule devices and microscopic processing are to: 
1. Contribute to fundamental knowledge; 
2. Enable transformative transitions towards innovative 

inroads of science, engineering and technology ; 
3. Advance prospective technologies and solutions; 
4. Potentially enable understanding of phenomena, 

mechanisms and principles of information and data 
processing in living organisms;  

5. Advance device physics of microscopic devices; 
6. Comprehend mechanisms and principles of sensing, 

processing and memory by biomolecules and biomolecular 
assemblies; 

7. Devise and examine practical enabling paradigms of 
sensing and processing by engineered devices and fabrics. 
Enormous advantages are foreseen because the 

aforementioned advances and premises promise to ensure a 
leap in sensing as well as enable data processing preeminence, 
computing superiority and memory supremacy. 

 
2. MACROSCOPIC AND MICROSCOPIC DEVICES 

 
 The majority of microelectronic devices are macroscopic 
from device physics, phenomena utilized and analysis 
prospects [1]. In these microelectronic devices: 

 Quantum phenomena are not utilized; 
 Quantum effects and mechanics are not usually applied to 

examine the baseline characteristics and capabilities; 
 Quantum effects significantly degrade the overall 

capabilities and functionality. 
 Microscopic systems are examined by applying quantum 
mechanics. The device, module and system testing, 
characterization and evaluation are imperative tasks. The 
Heisenberg uncertainty principle provides the fundamental 
limits on the measurements implying constraints on the 
testability, characterization, evaluation, etc. The position-
momentum and energy-time limits on the measurements are 
given by using the standard deviations on the observables as  
 x p ½   
and E t ½ .               (1) 
 The implications and consequences of the Heisenberg 
uncertainty principle are:  
 Depending on devices and device physics, quantum-

mechanical sensing, memory and processing processes, 
mechanism and phenomena exhibited by natural and 
engineered microscopic systems may or may not be 
directly and explicitly ascertained, characterized, 
demonstrated and verified; 

 Some theoretical premises, postulates and hypothesis can 
be indecisive, unverifiable or impractical. 

 Despite the limits and complexity emphasized, practical 
and functional microscopic devices and systems can be 
designed, tested and verified. For example, lasers, resonant-
tunneling transistors and other devices, which utilize quantum 
effects, were characterized, used and implemented.  
 

3. QUANTUM-EFFECT MOLECULAR DEVICES  
 
 Various cyclic molecules, organic and inorganic 
compounds have being synthesized, and, their chemical and 
physical properties are reported [2]. Supramolecular 
assemblies and complexness can be synthesized using 
supramolecular chemistry procedures. These assemblies are 
synthesized from molecular subunits and components. The 
exhibited phenomena, characteristics and spatial three-
dimensional assembly topology are predefined by the 
electronic coupling between atoms and molecules, bonds, 
molecular orbitals, weak forces (electrostatic, intermolecular, 
hydrogen bonding, hydrophobic, pi-pi interaction, van der 
Waals and other), strong forces (covalent bonding between 
atoms which share electrons), etc. There are reversible 
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noncovalent interactions between molecules in supramolecular 
assemblies and complexes. Using molecular building blocks 
and structural units, supramolecular assemblies and complexes 
are synthesized usin macrocycles, self-assembly, molecular 
recognition, complexation, template-directed motifs, etc. The 
engineered microscopic devices, which exhibit the specified 
quantum phenomena, can be synthesized using cyclic 
molecules, compounds, cages and other structures with carbon 
interconnecting frameworks and scaffolds [2, 3]. 

The  electrons move between multielectron atoms over 
which the  bonds resonate. These delocalized  electrons in a 
molecule are not attributed to a specific atom or covalent bond. 
Delocalized electrons are contained within an orbital which 
extends over several adjacent atoms. Delocalized electrons in 
conjugated systems of double bonds, aromatic and other 
systems are of our particular interest.  
 In the aromatic ring of benzene, there are six delocalized  
electrons. There are overlaps of the orbitals in the p-p  system 
in benzene and in the p-d  system in the phosphhazene ring. 
The motion and propagation of delocalized electrons in 
molecules may be controlled. Figures 1 report single-molecule 
devices with overlapping atomic orbitals. These devices may 
have the input, control and output ports. The orbitals of the 
terminal atoms are hybridized to the adjacent atoms (not 
shown) by electron-pair covalent bonds. E.g., molecules are 
covalently bonded directly or using linkers and spacers to form 
molecular fabrics.  
 

  
Figure 1. Multi-terminal cyclic molecule  

 
The motion and states of electrons can be controlled by 

using external excitations. The device physics of single-
molecule microscopic devices is based on quantum 
interactions, perturbations, controlled electron transport, charge 
variations, field changes and other controlled quantum-
mechanical or quantum-phenomena-induced evolutions. The 
applied excitation 

E(t,r)=[VE(t,r), EE(t,r), BE(t,r)] 
changes the time- and spatial-varying potential function (t,r), 
volume charge density (t,r), electric field intensity E(t,r), 
vector magnetic potential A(t,r) as well as quantum-
mechanical quantities (absorption, emission, probabilities, 
rates, reflection, transmission and other). Time- and spatially-
varying E(t,r) could be potential VE(t,r) and electromagnetic 
fields EE(t,r) and BE(t,r). 
 Molecular devices may operate in the controlled electron-
exchangeable environment. The controlled super-fast potential- 
and field-assisted propagation of electrons, charge variations, 
field evolutions and quantum effects can be achieved. The state 
transitions, system evolutions, interactions and other 
phenomena quantitatively define the device physics, quantum-

mechanical statistics, etc. The device controllability should be 
achieved by varying E(t,r). Metastable evolutions, quantum 
interactions, photon emission and absorption as well as other 
transductions were observed and implemented. 
 

4. EVOLUTION OF MICROSCOPIC SYSTEMS: 
FORMULATION AND SOLUTIONS OF QUANTUM-

MECHANICAL PROBLEMS 
 
 Quantum mechanics is applied to describe and examine 
the evolutions and transitions of microscopic particles 
(electrons) and systems. Analysis of electron propagation and 
quantum state transitions ultimately results in the analyses of 
device functionality, controllability and capabilities.  
 To examine microscopic systems, consider the evolution 
of electrons. The unperturbed time-dependent Schrödinger 
equation is 

 
t
tittt

m
),(),(),(),(

2
2

2 rrrr ,            (2) 

where (t,r) is the wave function; (t,r) is the potential. 
In general, the time-dependent and time-independent 

Schrödinger equations are 

 
t

titH ),(),( rr , (r,t)= (r) (t), and H =E ,  (3) 

where H is the total Hamiltonian operator, H=H0+HI+HP+HE; 
H0 is the unperturbed Hamiltonian; HI, HP and HE are the 
interaction, perturbation (disturbances, interferences and other) 
and excitation (control) Hamiltonian terms. 
 The wave function  is given as 

ti

n
nn

tEi

n
nn

n
nn

n

n

ececttct
111

)()()()(),(),( rrrrr ,(4) 

where cn
2 is the probability that a microscopic system is in a 

state with En, 1
1

2

n nc . 

 
 Example 4. 1.  
 In a magnetic field, the interaction of a magnetic moment 

 with a magnetic field B changes the energy by �– ·B. The 
external electromagnetic field affects the Hamiltonian. For a 
particle in a uniform magnetic field B, one has 

 222
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where  is the angular momentum; L is the orbital angular 
momentum.                  
 
 Using the Hamiltonian operator H, one explicitly derives 
the evolution of the expectation value of an operator B as 

 ],[1 HB
it

BB
dt
d , [B,H]=BH�–HB,            (5) 

 If B has no explicit time dependence, then, the change of 
the expectation value is  

 ],[1 HB
i

B
dt
d .              (6) 

 The operator B corresponds to a physical observable b as 
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 dVtBtb ),(),(* rr .             (7) 
 For the wave function, which may characterizes the 
physical state for the system, one obtains 
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 The wave function  is not a physically measurable or 
observable quantity. 
 
 Example 4. 2.  
 Consider a microscopic particle which moves in an 
external time-dependent electromagnetic field. The vector 
magnetic and scalar electric potentials are A(t,r) and V(t,r).  
 The time rate of change of the expectation value of r is  
 Aprr

c
q

m
H

idt
d 1],[1 .  

 From Apv
c
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m
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the time rate change of the expectation value for the velocity 
operator is 
 EvBBvv
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2
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 This equation describes the evolution of v .  
 The charged carriers can be controlled by changing the 
electromagnetic field. The time-dependent Schrödinger 
equations for two distinct states with 
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where f(t,r) is the continuous differentiable Lipshitz function. 
 One derives  
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 We study the evolution of observables in microscopic 
systems. There is a need to examine the motion of delocalized 
electrons, probabilities, transition rate, etc. For example, the 
delocalized electrons may propagate within the bonding 
molecular orbitals, each occupied by two electrons of opposite 
spin leading to a covalent bond. Using (t,r), one obtains the 
probability of finding the delocalized electrons at the specified 
spatial infinitesimal volume v as 
 

v

dvttP ),(),(* rr .             (9) 

 This probability yields estimates for the delocalized 
electron velocity, transit time, transmission, etc. The 
probability current density J(t,r) is frequently applied. The 
probability density and probability current density are  

P(t,r)= *(t,r) (t,r)              (10) 

and ),(),(),(),(
2

),( ** rrrrrJ tttt
m

it .          (11) 

 
Example 4. 3.  
The expectation value of x is 

dxxtxxtx ),(),(* .  
 The evolution of d x /dt is govern by 

 dx
xm
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d **
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2
. 

 The probability to find a microscopic particle between a 
and b at time t is found as 
 b

a
dxxtxt ),(),(* .  

 One obtains the evolution of the probability of finding a 
particle in a x b as 

),(),( btJatJ
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Example 4. 5.  
Consider a microscopic particle if its one-dimensional 

motion is confined in [0 L], and, 
Lxx

Lx
x

 and 0for 
0for         0
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By solving the Schrödinger equation  
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 The probability of finding a particle within x [0  l] is 
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5. MULTIELECTRON ATOMS AND MOLECULES 
 
 A neutral atom with atomic number Z contains a nucleus 
with electric charge eZ and Z electrons. The Hamiltonian for a 
single nonrelativisitic electron in the central Coulomb potential 

r
Zer
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 For multielectron atom, the unperturbed Hamiltonian 
operator  
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implies the need to solve the following partial differential 
equation in 3Z dimensions 
 H0 (r1,r2,�…,rZ)=E (r1,r2,�…,rZ).          (13) 
 It is impossible to analytically solve the Schrödinger 
equation (13) for even simple multielectron atoms due to the 
electron-electron and electron-nucleus interactions. The 
perturbations and excitations, which must be considered, 
further significantly complicate the problem. Electromagnetic 
fields (excitations, perturbations, disturbances, interferences 
and other) affect a total H. One yields the resulting equation 
 H (r1,r2,�…,rZ)=E (r1,r2,�…,rZ), H=H0+HI+HP+HE,    (14) 
 
 Example 5. 1.  
 The electric field intensity E, which affects H, depends on 
the potential V. For the static case  
 E=�– V.  
 In linear isotropic media  
 E= ,  
where the volume charge density is =dq/dv. 
 In general one uses (r), while, in the homogeneous media 
 is constant. The Poisson equation for the electric potential 

 2V=�– /   
is solved by using the boundary conditions.  
 In the spherical coordinate system one finds 

 
dr

rdVr
dr
d

r
rV )(1)( 2

2
2 , 

and E=�– V.                  
 
 We consider the microscopic system under the excitation 
(control) E(t,r)=[VE(t,r), EE(t,r), BE(t,r)] and perturbations. For 
time-varying electromagnetic fields, the nonhomogeneous 
wave equations for scalar and vector potentials are 

 
t
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 Equations (15) are reduced to 

 E=�– V,  
 2V=�– / ,  
 2A=�– j             (16) 
only for a static case which is not sufficient or adequate for 
many problems. 
 Hence, for microscopic systems one needs to solve the 
Schrödinger (14) and nonhomogeneous wave (15) equations in 
order to obtain time-varying transductions, state transitions, 
evolution of observables, etc. The aforementioned problem is 
analytically and numerically unsolvable even for atoms with a 
few electrons. We apply the Hartree-Fock paradigm examining 
the delocalized electron using the effective Zn(r) which is 
evaluated at the average value of r for the shell. The atomic 
wave function is represented as a product of single-electron 
orthonormalized wave functions 
 (r1,r2,�…,rZ)= 1(r1) 2(r2)�… Z(rZ).          (17) 
 Each-electron wave function satisfies the equation 
 Hj j(rj)=Ej j(rj), Hj=Hj0+HjI+HiP+HjE,          (18) 
yielding Z simultaneous integro-differential equations (18) for 
Z wave functions j(rj). Equations (16) and (18) are solved 
simultaneously. The aforementioned iterative self-consistent 
scheme allows one to solve a quantum-mechanical problem for 
delocalized, optically- and field-active electrons which define 
or affect the device functionality, performance and capabilities. 
 

6. CONCLUSIONS 
 
 Applying theoretical foundations of quantum mechanics, 
we examined quantum phenomena which may be utilized to 
ensure sensing and processing by single-molecule devices. The 
controlled evolutions of microscopic particles in microscopic 
devices were studied to research the overall functionality, 
processability, controllability and other features. A high-
fidelity modeling with consecutive heterogeneous simulations 
and data-intensive analysis were performed.  
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