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ABSTRACT 

  This paper studies robust fault-tolerant 
neuromorphic computing to support enabling application-
specific design and enable emerging nanoscale 
microelectronics. We develop an energy-centric 
probabilistic design concept and propose a library of 
neuromorphic networks for logic functions. These 
developments enable robust failure tolerance, adaptation 
and reconfiguration of complex large-scale networks. The 
innovative methods and tools in design of neuromorphic 
networks are verified for unreliable, defective, faulty and 
failed interconnect and cells which may operate under large 
perturbations.  
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1. INTRODUCTION 

Our interest in neuromorphic computing is motivated 
by large uncertainties, noise, quantum-effects variations, 
interferences, disturbances and other perturbations in 
nanoscale processing primitives [1, 2]. New methods and 
tools must be developed for processing platforms which are 
implemented using nanoscaled macroscopic processing and 
logic gates because they exhibit stochastic dynamics, 
probabilistic variations, oscillations and multi-stable 
switchings. We focus on analysis of behavior, robustness 
and stability of networks comprised from computing cells. 
The proposed neuromorphic networks can be viewed as a 
biologically inspired computing and memory scheme. The 
researched solutions may typify to some extent processing 
by living organisms. We utilize the most advanced design 
concepts and solutions such as:  

1. Massive parallelism;  
2. Distributed, robust and fault-tolerant processing of 

probabilistic, noisy and inconsistent information; 
3. Robust computing under large perturbations and 

uncertainties.  
The Hopfield networks for computing and 

implementation of logic functions result in small number of 
neurons and iterations needed to achieve training. The 
following undesirable effects are associated in redundant 
Hopfield networks:  

1. The overall network and interconnect complexity 
(from 3 links in an optimal topology to 9 links in 
the case of 2-neuron redundancy); 

2. The large number of iterations (instead of several 
iterations in an optimal network, it may require 
many iterations to achieve training);  

3. The complexity of decoding (assuming an optimal 
topology, 22 logic functions must be selected from 
23 alternatives, while in the case of 2-neuron 
redundancy, 22 values of a logic function must be 
selected from 25 alternatives). 

It is imperative to enable the existing methods and 
approaches for emerging nanoscale microelectronics, 
quantum-mechanical devices and computing fabrics. The 
Hopfield and other networks can be characterized and 
designed by using physically-relevant quantities departing 
from abstract concepts. In this paper, we successfully 
utilize and demonstrated the energy- and probabilistic-
centric design of complex networks. The proposed 
approach results in efficient and redundant fault-tolerant 
parallel commuting under large perturbations and 
uncertainties. It is documented that a robust processing of 
fuzzy, probabilistic, noisy or inconsistent data can be 
accomplished. 

 
2. INTRODUCTION TO STOCHASTIC COMPUTING  

Neuromorphic networks, which use the most promising 
design concepts and focus on front-end technologies, have 
being researched extensively [1-3]. These networks, in 
general, cannot be viewed as biologically inspired 
processing due to:  

1. A lack of coherent understanding of processing in 
living organisms at device and system levels;  

2. Fundamental shortcomings of information theory 
and computer science on information processing 
and information measures; etc.  

While engineered systems perform data processing, 
vertebrates and invertebrates exhibit information 
processing. It is illustrated in [1, 2] that neuromorphic 
networks may exhibit the following properties, capabilities 
and attributes:  

(i) Robustness and failure tolerance; 
(ii) Flexibility and plasticity;  
(iii) Processing of fuzzy, probabilistic, noisy, or 

inconsistent data;  
(iv) Massively parallel and distributed data 

processing.  
The Hopfield network [4], in contrast to the so-called 

Boltzmann machine [5, 6], leads to a deterministic 
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computing model using a parallel relaxation due to the 
properties of neurons in a distributed system. In general, the 
design of networks can be accomplished by minimizing the 
energy in stochastically perturbed systems. The computing 
in cellular networks of arbitrary configurations can be 
realized by using the random change of states of cells with 
respect to the objective function until stable states of cells 
are achieved. These stable states encode and manifest the 
final result. In the proposed neuromorphic networks, this 
yields values of elementary logic functions. In general, the 
relaxation is a dynamic evolution. The various states of the 
network form a search space. A randomly chosen state will 
transform itself into one of the local minima at the nearest 
stable state. Even if the initial state contains inconsistencies, 
uncertainties or variations, a logic network will converge to 
a solution, which ensures the fewest constraints minimizing 
the system energy. 

 
3. DEVICE PHYSICS AND PHENOMENA AT 

NANOSCALE 
Conventional semiconductor nanoscale devices exhibit 

quantum phenomena which could significantly degrade the 
overall performance, capabilities and functionality [7]. 
Processing cells, which are comprised from the 
aforementioned interconnected devices, as well as design 
concepts, must be examined. In the modeling of cells, it is 
feasible to utilize the distribution laws. For example, the 
Boltzmann machine applied a probabilistic training. A cell 
has an active state with a probability, which associates with 
the energy function. The energy reflects and may explicitly 
characterize the state change of cells. 
 The average kinetic energy of a system, as given by 
3kBT/2, depends on the absolute temperature T. Here, kB is 
the Boltzmann constant. For macroscopic electronic 
devices, the Fermi-Dirac and Maxwell-Boltzmann 
distributions are  
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where EF is the Fermi energy. For intrinsic semiconductors, 
the Fermi energy depends on the energy gap Egap and 

effective masses. In particular,
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 The quantization of the radiation (electromagnetic) 
field can be performed. The Hamiltonian operator 
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were pj and qj are the momentum and coordinate operators.   
 The energy of the lattice vibration mode at frequency ω 
is given as En=(n+1)ћω. If the lattice is in the thermal 
equilibrium, the probability, that the mode is exited to the 

state n is 
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 For the black body radiation, the average energy per 
mode in the thermal equilibrium is 
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 The average excitation is characterized by the average 
number of quanta 
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4. NETWORKS DESIGN  

 We emphasized some essential features of microscopic 
and nanoscale (macroscopic) semiconductor electronic 
devices. One may use energy and examine energetic 
quantities designing rudimentary, complex and large-scale 
networks. It is possible to define the network energy and 
accomplish design tasks evaluating the energy changes. The 
cells and network energies depend on the device switching 
function, activity, losses, etc. Performance, characteristics 
and abilities of semiconductor devices, which implement 
logic gates, are affected by kBT. Thus, the cells and 
networks can be energetically characterized and evaluated.  
 At the network equilibrium, for a network with 
N=(N1,N2,…) cells, the average energy of a cell and a total 
network energy are 
 Ecell=E/N=kNS, E=NkNS,        (4) 
where kN is the energy-relevant network-dependent quantity 
which is a function of parallelism, redundancy, complexity 
and other features [J/switching]; S is the switching-activity 
functions [switching].  
 One can define the probability that the cell is exited to 
the specific state, the average energy per switching, as well 
as other descriptive features. As statistical premises are 
applied to microscopic and macroscopic systems, the 
statistical concepts can be also used for cells and networks. 
For example, the Maxwell-Boltzmann and Fermi-Dirac 
distributions (1) are applied to distinguishable and identical 
particles. The probabilities for retaining of a particular 
energy for distinguishable and identical processing cells are 
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where E0 is the energy of the most-energetic cell in the 
relaxed (ground) state in non-interacting network. 
 Equations (5) provide the probability that a cell is in a 
state characterized by the energy E. Consider the 
distributions (5). In equilibrium, the average (probable) 
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number of cells in a network, which will be found in state 1 
(with state energy E1) is NE1=φ(E1). 
 In the threshold models of logic gates, the output of a 
binary cell is either logical 0 or 1, but the probability 
distribution is a sigmoid function, on average.  
 Two-input AND, NAND, OR and NOR elementary 
logic functions can be generated and realized by a single 
cell. Control over the type of logic function is achieved by 
varying the threshold θ and weights wi∈[1, –1] of two 
inputs. The output is the arithmetic sum. The recursive 
stochastic models at the gate level is 

f=w1×x1+w2×x2–θ.          (6) 
 Recursive stochastic models are based on the property 
of relaxation, e.g., an ability to relax (evolve) to a stable 
state. Within the proposed approach, a value of a Boolean 
function f, given an assignment of its Boolean variables, is 
computed through evolution of cells in the network.  
 In [5, 6], the relaxation is controlled by using the 
“pseudotemperature” which is not a physical quantity. In 
particular, the training is accomplished by assuming the 

following probability [6] 
TExx kkk e

p /1
1
Δ−−→ +

= .  

 We characterize, examine and evaluate cells and 
networks by using a well-defined energy (4). Furthermore, 
physically- and logic-consistent distributions (5) are 
applied. The system (network) may evolve to a higher 
energy configuration or state, evolving from a local 
minimum. While the Hopfield network uses local minima 
(as the memory of a network), the probabilistic concept 
enables the Hopfield approach by using the stimulated 
excitations and relaxations to reach a global minimum. 
 

5. NEUROMORPHIC MODEL 
The stochastic nature of various phenomena 

(interference, thermal noise, electron tunneling, 
quantization, delays, oscillations and others) were 
emphasized. In addition, fabricated ICs and logic networks 
will have defects which affect the functionality and 
capabilities of components, modules and systems. 
Stochastic methods should be applied to study the 
processing circuit failures, yield, etc. The aforementioned 
phenomena and considerations significantly affect the 
reliability, performance and functionality of logic cells. 
Reliable and robust computing in the presence of faults is 
addressed by applying the premise of fault-tolerant 
computing. Though problems of reliable computing by 
networks with faulty nodes and interconnect was addressed 
[8], the existing approaches are not effective or not 
applicable at interconnect, device and system levels. The 
reported techniques may be unacceptable or ineffective for 
improving the reliability of single and interconnected logic 
cells. These facts were demonstrated by von Neumann 
examining the NAND cells [9]. Von Neumann 
demonstrated a significant complexity of correction and 
redundancy at the gate level. This complexity reduces 
effectiveness of redundant-centric techniques and 

diminishes the reliability of logic cells which compute 
rudimentary logic functions. 

Complexity of interconnect and redundant logic 
networks significantly decrease the overall effectiveness of 
fault-tolerant computing. Many concepts [1, 2, 10, 11] were 
proposed and verified to accomplish fault-tolerant 
computing thereby enabling robustness, accommodating 
failures, accomplishing error corrections, etc. The following 
features of the proposed neuromorphic models enable fault-
tolerant and robust implementation of logic functions f: 

1.  The cells should be in one of two computing states, 
e.g., active (encoded by 1) and inactive (encoded 
by 0); 

2.  The network of interacting cells is fully 
interconnected and symmetrical, e.g., each cell is 
connected to other cells. Every pair of cells has a 
connection assigned by a weight Cij. A positive 
weighted connection indicates that two cells tend 
to activate each other triggering mutually 
supportive activities. A negative weight allows an 
active cell to deactivate a neighboring cell 
triggering incompatible activities; 

3.  A recursive computing: The outputs of each cell 
feed into the inputs of other cells. If asynchronous 
control is chosen, and, each cell makes a decision 
based only on its state; 

4.  Any elementary logic function f of n Boolean 
variables can be implemented by a network with at 
least (n+1) cells. 

 The aforementioned new features and controlled 
evolutions enable robust processing and uniquely suit 
parallel asynchronous computing. For a network with 
N=(N1,N2,…) cells, there are various possible cell 
configurations which are characterized by E, and, 
Ecelli=(Ecell1,Ecell2,…). To ensure network evolutions through 
relaxations, we define the physically- and logic-consistent 
quantity 
 ∑ ∑∑ +−= ≠

n
i

n
i ii

n
ijj jiij vHvvCE ,2

1 ,       (7) 
where vi is the state of the ith cell; Cij is the connection 
weight;  Hi is the threshold value; n is the total number of 
cells excluding bias cell. 
 Let a cell be randomly chosen. If any of its neighbors 
are active, the cell computes Ej to the active neighbors. If 
Ej>0, the cell becomes active, otherwise, it becomes 
inactive. For the second cell, chosen at random, the process 
repeats until the network reaches a stable state within a 
local minimum. That is, the process continues until no more 
cells change their states. The state reflects the assignment of 
truth and falsity to the various hypotheses under the 
constraints. The statistical updating ensures probabilistic 
updating. Instead of setting the state of the ith cell 
deterministically, the probability pi that a cell takes the 
specified state is used. The algorithm is: 

1. Select initial Ei for a randomly-chosen cell i;  
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2. Calculate ΔEi, ΔE=E–E0. If ΔEi>0, calculate the 

probability ( ) 1/1 −Δ−+= SkE
i

Niep , relevant to (4), 
that cell i takes a specified state (for example, 1). 

3. Else set the state of cell i to –1; 
4. Repeat steps 1 through 3 until *ΔEi*≤ε, ε>0. 

 
6. FAULT-TOLERANCE 

 A Hopfield network of logic cells is parallel and 
inherently fault-tolerant in its optimal configuration. The 
optimal configuration means that there is no other network 
exists which represents this function using fewer cells. In 
the proposed fault-tolerant design, each logic cell can 
contain more than three cells. Three cells network is 
optimal for AND, NAND, OR and NOR, while, EXOR and 
XNOR need more cells. We examine robustness, stability 
and functionality of the elementary cells to large perturb-
bations and uncertainties in connections (links) and cells.  
 The superposition of inherent noise, interference and 
other disturbances are considered as stochastic 
perturbations ξ. We use the perturbed-to-unperturbed ratio 
Rp which characterizes the strength of the ξ. In general, ξ is 
a mapping of all ξi which are hardware-dependent. 
Continuous and discrete distributions of random ξi result in 
probability functions γ(ξi) as well as distribution functions. 
Normal, binomial, hypergeometric, Poisson and other 
distributions affect ξ.  
 We simplify the analysis by using Rp0[0 1].  
 For an ideal unperturbed model Rp=0, while for a 
completely faulty cell, Rp=1.  

The cell states are function of ξ. The energy of the 
network is 
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.        (8) 
Figures 1 illustrate the quantitative data for the 

neuromorphic model of AND, NAND, OR, NOR, XOR and 
XNOR gates. The graph shows the relationship between Rp 
and probability (assurance) of reaching the correct solution, 
which is the supposed output of logic functions f. The 
stochastic perturbations ξ are modeled as uniformly 
distributed discrete random noise. For Rp0[0 0.4], the 
correct output f for AND, NAND, NOR and OR gates is 
achieved within ~100% requiring 400 iterations. In 
contrast, gates XOR and XNOR achieve the correct f from 
80% to 100% requiring ~450 iterations. As Rp increases, the 
required number of iterations to achieve stability increases. 
Figure 1.b illustrates the number of iterations for the 
network to evolve to a stable state for different Rp.  

 
7. CONCLUSIONS 

We proposed a new approach which allows one to 
design complex large-scale networks. These networks may 
realize arbitrary complexity logic functions. The reported 
procedure, design concept, network configurations and 
schemes lead to highly robust, reliable and fault-tolerant 
computing under large perturbations and uncertainties. If in 
the proposed redundant networks, a few cells misbehave or 

completely fail, as well as interconnect fails, the network 
may still ensure overall functionality. The fault-tolerance of 
networks can be further improved using redundancy. 
Illustrative results validated our findings and documented 
the effectiveness of the proposed approaches and schemes. 

 

 
           (a)        (b) 

Figure 1. Fault-tolerance of the neuromorphic model of 
elementary logic gates in the presence of disturbances for 

Rp0[0 0.4] (5000 runs) 
 

REFERENCES 
1. S. Lyshevski, S. N. Yanushkevich, V. P. Shmerko and 

V. Geurkov, “Computing paradigms for logic 
nanocells,” J. Computational and Theoretical 
Nanoscience, vol. 5, no. 12, pp. 2377-2395, 2008. 

2. V. P. Shmerko, S. N. Yanushkevich and S. E. 
Lyshevski, Computer Arithmetics for Nanoelectronics, 
CRC Press, Boca Raton, FL, 2009. 

3. C. Mead, “Neuromorphic electronic systems,” Proc. 
IEEE, vol. 78, no 10, pp. 1629-1639, 1990. 

4. J. J. Hopfield, “Neural networks and physical systems 
with emergent collective computational abilities,” 
Proceedings of National Academy of Sciences, USA, 
vol. 79, pp. 2554-2558, 1982. 

5. D. H. Ackley, G. E. Hinton, T. J. Sejnowski, “A 
learning algorithm for Boltzmann machines,” 
Cognitive Science, no. 9, pp. 147-169, 1985. 

6. S. Haykin, Neural Networks: A Comprehensive 
Foundation, Prentice Hall, NJ, 1999.  

7. International Technology Roadmap for 
Semiconductors, 2009 Edition, Semiconductor Industry 
Association, Austin, TX, 2009. 

8. P. J. Kuekes, W. Robinett, G. Seroussi and R. S. 
Williams, “Defect-tolerant interconnect to 
nanoelectronic circuits: Internally redundant 
demultiplexers based on error-correcting codes,” 
Nanotechnology, no. 16, pp. 869, 2005. 

9. J. von Neumann, "Probabilistic Logics," Automata 
Studies, no. 34, Princeton University Press, 1956 

10. D. Crawley, K. Nikoli´c and M. Forshaw, Eds., 3D 
Nanoelectronic, Computer Architecture and 
Implementation, Institute of Physics Publishing, UK, 
2005. 

11. S. N. Yanushkevich and V. P. Shmerko, “Nature-
inspired computing for predictable nanoelectronics,” J. 
Computational and Theoretical Nanoscience, vol. 7, 
pp. 1-22, 2010. 

NSTI-Nanotech 2011, www.nsti.org, ISBN 978-1-4398-7139-3 Vol. 2, 2011 693




