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ABSTRACT 
 

     We have developed a surface potential based compact 
model for the single-walled semiconductor CNT field effect 
transistor (CNT-FET) shown in Figure 1. Our compact 
modeling results for surface potential, channel charge, gate 
capacitance and channel current are shown in Figures 2-5 
respectively. The model comparison is done using the 
numerical results of [1-4]. The compact model is developed 
for circuit simulation application based on graphene 
material physics using a 1-D approximation. 
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1 INTRODUCTION 
 

       
     There is a strong possibility of integration in the 
semiconductor industry of carbon based devices such as 
CNT field effect transistor (CNT-FET) on to a silicon 
platform beyond the dominant CMOS scaling, to achieve 
integrated circuits (ICs) with high performance and speed. 
As a result CNT-FET compact models will be required for 
hybrid (CMOS and CNT-FET) circuit simulation 
applications.  
 
There has been extensive modeling work done for a CNT-
FET that is shown in Figure 1. For example Prof. Wong’s 
group at Stanford [1-4] has developed a semi-analytic 
model that determines the surface potential numerically, or 
represents it by an empirical equation [1, 2]. The work done 
by Prof. Pulfrey’s group at University of British Columbia 
(UBC) is mainly a numerical [5-7] solution of the coupled 
Poisson and Schrodinger PDEs and it is not appropriate for 
circuit simulation application.  

 

 
Figure 1: Single-walled CNT field effect transistor. 
 
 
In this paper our compact models are developed based on 
the graphene material physics using a 1-D approximation 
for circuit simulation application. 
The CNT-FET compact model derivation is given in 
Section 2 and the model simulation results with comparison 
of the numerical result, [1], are given in Section 3. 
 
 

2 COMPACT DEVICE MODELS 
 
The results from [4, 7] allow us to express the CNT-

FET surface charge density, Qcnt, in terms of the surface 
potential, ψs, as 
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The nanotube radius can also be written as a function of 
nanoribbon width w [8, 11]: 
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where  nmmnaw  223  and a=0.142nm is the 
carbon-carbon bond length. The chiral numbers n and m 
denote the number of unit vectors along the two directions 
in the honeycomb crystal lattice of the graphene. 
 
For long tubes an integral representation of the charge 
density is also given in [4] using a density of states (DOS) 
calculation (also see [9]). The CNT charge density can be 
simplified using a first sub-band energy approximation [3]: 
 

)1(
2

Tk
qV

Tk
q

iCNT
b

ds

b

s

eenqQ





                               (3) 

 
where ni denotes the intrinsic carrier density, kb the 
Boltzmann constant, T temperature, q electrical charge and 
Vds drain-source voltage. 
 
Equation (1) and (3) yield the surface potential as 
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where W’(x) is the Lambert function which is a solution of 

'' WeWx  (see [10]). The parameter 
8.238.13  td  is used as a fitting parameter and 

td is diameter of the nanotube per nm length. 
 
The channel current of a ballistic CNT-FET, which is the 
net flux of forward and backward traveling carriers, can be 
derived using the first sub-band energy approximation [1]. 
 
















)1ln()1ln(
4 2

22
2

2
Tk

EqVq
Tk
Eq

b
ds

b

gdss

b

gs

ee
h
Tqk

I


(5) 

 
where )0,(  dsgsss VV , h is Planck’s constant, 
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3 RESULTS AND DISCUSSION 
 

     Our compact modeling results for surface potential, 
channel charge, gate capacitance and channel current are 
shown in Figures 2-5 respectively.  
 

 
Figure 2: CNT-FET channel surface potential versus 
relative gate voltage Vgs-Vfb for nanotube diameter dt=0.8, 1 
and 1.5nm, high-K dielectric thickness tins=10nm with 
K=15 is used and Vds=0V. 

The model comparison is done using the numerical results 
of [1] and the model shows a good fit. In Figures 4 and 5 
the approximation that was taken at large nanotube 
diameter dt needs improvement and this leads to future 
modeling approaches.  
 

 

Figure 3: CNT-FET channel charge versus relative gate 
voltage Vgs-Vfb for nanotube diameter dt=0.8, 1.0 and 
1.5nm, high-K dielectric thickness tins=10nm with K=15 is 
used and Vds=0V. 
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Figure 4: CNT-FET gate capacitance per unit length versus 
relative gate voltage Vgs-Vfb for nanotube diameter dt=0.8, 
1.0 and 1.5nm, high-K dielectric thickness tins=10nm with 
K=15 is used and Vds=0V. 

 

 

 
Figure 5: CNT-FET channel current versus drain-source 
voltage Vds for nanotube diameter dt=0.8, 1.0 and 1.5nm, 
high-K dielectric thickness tins=10nm with K=15 is used. 
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