Analytic potential model for asymmetric underlap gate-all-around MOSFET

Shaodi Wang1,2, Xinjie Guo1,2, Lining Zhang2, Chenfei Zhang1,2, Zhiwei Liu2, Guozeng Wang2, Yang Zhang2, Wen Wu2, Xiaojin Zhao2, Wenping Wang2, Yu Cao2, Yun Ye2, Ruonan Wang2, Yong Ma2, and Jin He1,2*

1 The Key Laboratory of Integrated Microsystems, School of Computer & Information Engineering, Peking University Shenzhen Graduate School, Shenzhen 518055, P. R. China
2 Peking University Shenzhen SOC Key Laboratory, PKU HKUST Shenzhen Institute, Shenzhen 518057, P.R.China

* Email: jinhe@ime.pku.edu.cn

Abstract—An analytic potential model for undoped cylindrical gate-all-around (GAA) MOSFET with asymmetric gate underlap is developed in this paper. This model is derived by solving the Poisson’s equation with the parabolic potential approximation, channel length transformation and conformal mapping. The analytic body center potential solution is presented. Compared with TCAD simulations, the proposed model shows good agreements, with different dimensions of the structure and varied bias conditions. The model here is appropriate for predicting the effect of gate misalignment or asymmetric gate underlap in GAA MOSFETs’ design.

Keywords- asymmetric; underlap; misalignment; gate-all-around;

I. INTRODUCTION

Gate-all-around (GAA) or nanowire MOSFETs have been regarded as a promising technology for sub-10-nm CMOS devices, because of their good gate control capability over the channel [1]. As the fully-depleted gate-all-around (GAA) MOSFET’s natural length [2] is shorter than the double-gate (DG) MOSFET’s [3]. GAA MOSFETs minimize the short channel effects (SCE). To decrease the channel volume, gate underlap structure has been applied for double-gate MOSFETs [4] and cylindrical gate-all-around MOSFETs [5]. The underlap structure results in a bias-dependent effective channel length that is long in the subthreshold region and short in the on-state [6]. The impacts of gate underlap structure have been discussed in [5], such as reducing SCE. Considering the asymmetric structures’ advantage, double-gate MOSFETs with asymmetric drain underlap can reduce junction capacitance and has an optimization structure [7]. Additionally using a compact model that considers the fringing field effect, an analysis of the gate misalignment effect on the threshold voltage of DG ultrathin FD SOI nMOS devices is reported [8]. However, no analytical model for cylindrical GAA MOSFET with asymmetric gate underlap has been reported. In this paper, an analytic subthreshold potential model for asymmetric gate underlap cylindrical GAA MOSFETs is presented. The fringing field is derived by effective channel length transformation [9] and conformal mapping as done in [5].

This model is verified by the 3D numerical simulation tool TCAD.

II. ANALYTICAL MODEL FORMULATION

Fig.1. Three-dimensional schematic of an asymmetric gate underlap cylindrical gate-all-around MOSFET. Lun1 and Lun3 are the length of gate underlap next to source and drain respectively.

Conformal mapping is not directly applicable to GAA MOSFETs due to the 3-D cylindrical structure [5]. To solve this, a channel length transformation method has been developed in [9]. The effective underlap length L_{un1} and L_{un3} is expressed similarly by

$$L_{un1}\text{eff} = L_{un1} \left(\frac{\lambda_{DG}}{\lambda_{GAA}} \right)$$ \hspace{1cm} (1a)

$$L_{un3}\text{eff} = L_{un3} \left(\frac{\lambda_{DG}}{\lambda_{GAA}} \right)$$ \hspace{1cm} (1b)

$$\lambda_{DG} = \sqrt{\frac{\varepsilon_{s1}}{2\varepsilon_{ox}}} \left(1 + \frac{\varepsilon_{ox}t_{ox}}{4\varepsilon_{s1}t_{ox}} \right) t_{ox}$$ \hspace{1cm} (1c)

$$\lambda_{GAA} = \sqrt{\frac{2\varepsilon_{s1}t_{ox}^2 \ln \left(1 + \frac{2t_{ox}}{t_{si}} \right) + \varepsilon_{s1}t_{si}^2}{16\varepsilon_{s1}}}$$ \hspace{1cm} (1d)

Where λ_{DG} and λ_{GAA} are nature lengths of a DG MOSFET [3] and a GAA MOSFET [2] respectively. The transformations (1) maps the 3D potential distribution in a cylindrical structure into 2D potential in a planar double-gate structure and it only applied to regions I and III.
In [2], a body center potential solution along the channel direction is assumed in region II
\[\phi_{c2}(x) = [Ce^{(x-L_{eff})/L_{GAA}} + De^{(x-L_{eff})/L_{GAA}}] + (V_{gs} - \phi_{mx}) \] (2)

Fig. 2. Schematic of a transformation of the 3D GAA structure into DG structure. Regions I and III are underlap regions. Device body (regions I, II, and III) is undoped.

After the transformations (1) and conformal mapping, in regions I and III, the gate underlap regions of the source and drain, the body center potentials are given similar forms by [10]
\[\phi_{c1}(x) = A[1 - \frac{\alpha_1}{2}r_1^2] + Br_1 + \frac{\alpha_1}{6}r_1^3] + (V_{gs} - \phi_{mx}) \] (3a)
\[\phi_{c3}(x) = E[1 - \frac{\alpha_3}{2}r_3^2] + Fr_3 + \frac{\alpha_3}{6}r_3^3] + (V_{gs} - \phi_{mx}) \] (3b)
\[\eta_1 = \frac{t_{ox}}{L_{ox}} \sinh^{-1} \left[\frac{t_{ox}}{t_{ox}} + \frac{t_{ox}}{t_{ox}} \right] \] (3c)
\[\eta_3 = \frac{t_{ox}}{L_{ox}} \sinh^{-1} \left[\frac{t_{ox}}{t_{ox}} + \frac{t_{ox}}{t_{ox}} \right] \] (3d)
\[\alpha_1 = \frac{2\varepsilon_r t_{ox}}{\varepsilon_o R_{ox}} \quad \alpha_3 = \frac{2\varepsilon_r t_{ox}}{\varepsilon_o R_{ox}} \] (3e)
\[r_1 = \eta(L_{ox} - x) \quad r_3 = \eta(x - L_{ox}) \] (3f)

In which m is such that sin (mπ/2) = 1 and is chosen to be 2 (by matching the simulation results). A-F are underdetermined constants and are computed by applying the continuity of the potential and electric field between adjacent regions. These six boundary conditions are given in [10]. But as the transformations (1), the two continuity of electric fields boundary conditions are changed by:
\[\frac{d\phi_{c1}(x)}{dx} = \frac{d\phi_{c3}(x)}{dx} \] (4a)
\[\frac{d\phi_{c1}(x)}{dx} = \frac{d\phi_{c3}(x)}{dx} \] (4b)

The six values are obtained by these boundary conditions as
\[C = \frac{2[g_{1} + g_{2}e^{\phi_{1}/\lambda_{GAA}} + \frac{t_{ox}}{\eta_{GAA}} \varepsilon_{ox} e^{\phi_{1}/\lambda_{GAA}}] + V_{gb} + \frac{t_{ox}}{\eta_{GAA}}}{2[g_{1} + g_{2}e^{\phi_{1}/\lambda_{GAA}} + \frac{t_{ox}}{\eta_{GAA}} \varepsilon_{ox} e^{\phi_{1}/\lambda_{GAA}}] + V_{gb} + \frac{t_{ox}}{\eta_{GAA}}} \] (5a)
\[D = \frac{2[g_{1} + g_{2}e^{\phi_{1}/\lambda_{GAA}} + \frac{t_{ox}}{\eta_{GAA}} \varepsilon_{ox} e^{\phi_{1}/\lambda_{GAA}}] + V_{gb} + \frac{t_{ox}}{\eta_{GAA}}}{2[g_{1} + g_{2}e^{\phi_{1}/\lambda_{GAA}} + \frac{t_{ox}}{\eta_{GAA}} \varepsilon_{ox} e^{\phi_{1}/\lambda_{GAA}}] + V_{gb} + \frac{t_{ox}}{\eta_{GAA}}} \] (5b)
\[A = C + D \quad B = (D - C) \frac{t_{ox}}{\lambda_{GAA}} \eta_1 \] (5c)
\[E = Ce^{L_{ox}/\lambda_{GAA}} + De^{L_{ox}/\lambda_{GAA}} \quad F = (Ce^{L_{ox}/\lambda_{GAA}} - De^{L_{ox}/\lambda_{GAA}}) \frac{t_{ox}}{\lambda_{GAA}} \eta_1 \] (5d)
\[g_{1} = 1 - \frac{\alpha_1}{2} \left(\frac{\eta_{L_{ox}eff}}{t_{ox}} \right)^2 \quad g_{3} = 1 - \frac{\alpha_3}{2} \left(\frac{\eta_{L_{ox}eff}}{t_{ox}} \right)^2 \] (5e)
\[h_{1} = \frac{\eta_{L_{ox}eff}}{t_{ox}} \left(\frac{\alpha_1}{6} \right) \left(\frac{\eta_{L_{ox}eff}}{t_{ox}} \right)^3 \quad h_{3} = \frac{\eta_{L_{ox}eff}}{t_{ox}} \left(\frac{\alpha_3}{6} \right) \left(\frac{\eta_{L_{ox}eff}}{t_{ox}} \right)^3 \] (5f)
\[V_{x} = V_{bi} - V_{gs} + \phi_{mx} \] (5g)

Then transformed these solved potential solutions into the original structure. These solutions after length transformation are corrected with different dimensions of structure and these are verified by 3-D numerical simulation in the following results section. As the relationship in [2], surface potential can be derived from center potential and then the asymmetric underlap cylindrical GAA MOSFET’s subthreshold channel potential distribution is obtained.

\[\phi(r, x) = \phi_{c}(x) - \frac{\varepsilon_o R^2[\phi_{c}(x) - \phi_{mx}]}{2\varepsilon_o R^2 \ln(1 + \frac{t_{ox}}{R} + 2\varepsilon_o R^2)} \] (6)

Where x is along channel direction and r is along radial direction.
III. RESULTS AND DISCUSSION

TCAD simulation is used to verify the results provided by the proposed model without advanced physical effects. The body of underlap regions and body regions are undoped and the spacer above the underlap region is assumed to be oxide.

![Figure 4](image1)

Fig. 4. Body center potential for asymmetric gate underlap GAA MOSFET in channel direction with different lengths of gate underlap and gate bias compared with the TCAD 3-D numerical simulation.

In fig.4 great differences are observed between symmetric gate underlap GAA MOSFETs and asymmetric GAA MOSFETs. The lengths of underlap strongly influence the potential distribution in body regions. The minimum body potential is located in the middle of body region as expected. As an example, an asymmetric gate underlap cylindrical GAA MOSFET with \(R=7.5nm, \ t_{ox}=1.5nm, \ L_{gate}=20nm, \ H_{gate}=10nm \) is discussed in fig.4.

![Figure 5](image2)

Fig. 5. Body center potential for asymmetric gate underlap GAA MOSFET in channel with different thickness of gate-oxide compared with the TCAD 3-D numerical simulation.

![Figure 6](image3)

Fig. 6. Body center potential for asymmetric gate underlap GAA MOSFET in channel with different thickness of gate-oxide compared with the TCAD 3-D numerical simulation.

Fig.6 shows the model-predicted body center potential along the channel direction for asymmetric underlap with different thickness of gate-oxide. It can be seen that minimum potential decreases with the decrease \(t_{ox} \). Error is made in the drain underlap region when \(t_{ox} \) is thick. An asymmetric gate underlap cylindrical GAA MOSFET with \(R=7.5nm, \ L_{un1}=2nm, \ L_{un3}=4nm \) and \(H_{gate}=10nm \) is discussed in fig.6.

![Figure 7](image4)

Fig. 7. Body center potential for asymmetric gate underlap GAA MOSFET in channel with different lengths of over region (region II) and drain voltage compared with the TCAD 3-D numerical simulation.

Fig.7 shows the model-predicted body center potential along the channel direction for asymmetric
underlap with different length of overlap region. It is observed in fig. 7 the minimum body potential increase when length of gate decreases. From the figure, potential increase with \(V_{ds} \) increasing and we can predict large \(V_{ds} \) can lead to DIBL effect. An asymmetric gate underlap cylindrical GAA MOSFET with \(R=7.5 \text{nm}, \; L_{un1}=2 \text{nm}, \; L_{un3}=4 \text{nm}, \; H_{gate}=10 \text{nm} \) and \(t_{ox}=1.5 \text{nm} \) is discussed in fig. 7.

Fig. 8 shows the model-predicted body center potential along the channel direction for asymmetric underlap with different radius of body region. It is observed the error increases in the middle of channel when the radius of body decreases. An asymmetric gate underlap cylindrical GAA MOSFET with \(L_{un1}=20 \text{nm}, \; L_{un2}=2 \text{nm}, \; L_{un3}=4 \text{nm}, \; H_{gate}=10 \text{nm} \) and \(t_{ox}=1.5 \text{nm} \) is discussed in fig. 7.

IV. CONCLUSION

In this paper, an analytic subthreshold potential model for undoped GAA MOSFET with asymmetric gate underlap is established. Using the parabolic potential approximation, channel length transformation and conformal mapping, an analytic body center potential expression is derived. Compared with TCAD numerical simulation with different length of underlap, thickness of gate-oxide, length of overlap region and bias conditions, the proposed model is verified in all body regions. For the merits of high efficiency and accuracy, the proposed model is appropriate for predicting the effect of gate misalignment or optimization design for asymmetric gate underlap GAA MOSFETs.

ACKNOWLEDGMENT

This work is supported by NSFC of China (60876027), the RFDPHE (200800010054), the Fundamental Research Project of Shenzhen Science & Technology Foundation (JCC200903160353A, JCC201005280670A), the Shenzhen Science & Technology Foundation (CXB201005250031A, JSA200903160146A), and the Industry, Education and Academy Cooperation Program of Guangdong (2009B090300318).

REFERENCES