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ABSTRACT 
 
In this paper, a new iterative grid selection strategy for 

the Time-Mapped Harmonic Balance (TMHB) method is 
presented. This strategy is referred to the adaptive grid 
methods, which tracks the rapid transitions and constructs a 
smooth time-map function. The theoretical analysis and 
simulation results of this grid selection strategy are presented. 
The results demonstrate that this new strategy improves the 
numerical stability of  the TMHB method and achieves 
accurate results based on the improved TMHB method. 
 
Keyword: Time-Mapped Harmonic Balance, grid selection 
strategy , rapid transition 

 

1  INTRODUCTION 
 

Harmonic Balance (HB) methods are the frequency-
domain simulation algorithms for circuit simulation. For 
circuits where the nonlinearities are moderate, HB methods 
are the preferred algorithms over the time-domain methods 
such as shooting methods, because they can compute the 
periodic steady-state with spectral accuracy [1-3]. The 
preconditioned matrix-implicit Krylov-subspace algorithms 
have made these methods more efficient for the large circuits 
[4]. However, for the strongly nonlinear circuits with rapid 
transitions, the HB methods need a large number of 
harmonics to present the accurate circuit solution. The Time-
Mapped Harmonic Balance method (TMHB) is able to solve 
this kind of problem, which uses non-uniform grids to 
resolve the rapid transitions [5-6]. One significant weakness 
of the method is the grid selection strategies which may not 
well distribute the grid points and make the algorithm 
unstable [7].  
In this paper, a new iterative grid selection based on 
adaptive grid methods is developed. It produces a very stable 
and simple grid generation which yields a better result in the 
TMHB algorithm. The next section overviews the TMHB 
algorithm. In Section 3 the theoretical analysis of iterative 
grid selection strategy is demonstrated and a new iterative 
grid selection strategy is proposed. In Section 4 the results of 

the new iterative grid selection strategy are presented. 
Finally, a conclusion is given in Section 5. 
 

2  TIME-MAPPED HARMONIC BALANCE
 

For time domain the circuit equations are given by   
 
( ( )) ( ( )) ( ) 0dq v t f v t u t
d t

+ + =                                      (1) 

 
where  is the vector of input source,  is the vector of 
node voltage, and 

( )u t ( )v t
( ( ))f v t  is the vector of node currents and 

 is the node charge (or fluxes). All these vectors are of 
size N. The periodic steady-state solution of (1) satisfies 

( ( ))q v t

( ) (v t T v t)+ = . 
The TMHB method utilizes a non-uniform grid of M time 

points to describe the solution waveforms which have rapid 
transitions by mapping and solving the circuit problem in a 
new pseudo-time domain. This method uses the time-map 
function λ to convert a uniform grid in pseudo-time  to 
non-uniform grid in real time t. The time-map function 
concentrates time points in the sharp regions of the solution 
waveforms, making the solution waveform  much 
smoother when viewed in pseudo-time. Then HB methods 
are used in pseudo-time where the reduction in the truncation 
error of the pseudo Fourier series approximation is acquired. 
The time-map function is constructed as: 

t̂

( )v t

 
ˆ2ˆ ˆ( )

J
j kft

k
k J

t t t e πλ φ
= −

= = + ∑                                          (2) 

 
where 2J+1=S, S is the sampled non-uniform time points 
used to construct the time-map function. This construction 
guarantees its derivative with spectral accuracy in the TMHB 
method. 

In order to describe (1) in pseudo-time , using t̂
 

NSTI-Nanotech 2011, www.nsti.org, ISBN 978-1-4398-7139-3 Vol. 2, 2011 671

mailto:xnlin@szpku.edu.cn


 

' ˆ ˆ( )dt t dtλ=                                                                        (3) 
 

Substituting (2), (3) into (1):  
 

'

1 ˆ ˆ ˆ( ( ( ))) ( ( ( ))) ( ( )) 0ˆ ˆ( )
d q v t f v t u t

t dt
λ λ λ

λ
+ + =                           (4) 

 
The solution waveform  is represented as  ( )v t

 
ˆ2ˆˆ( ) ( ( ))

K
j kft

k
k K

v t v t V e πλ
=−

= = ∑                                         (5) 

 
where K is the number of harmonics in the truncation. 

Substituting the Fourier representations of  and  
in (4), which is expanded in frequency-domain yielding NM 
nonlinear algebraic equations as: 

( )v t ( )u t

 
1 1 1ˆ ˆ ˆ ˆ( ) ( ) ( )F V q V f V u− − −= ΓΛΓ Ω Γ +Γ Γ +Γ = 0         (6) 

 
where  is a diagonal matrix expressing time derivation in 
frequency domain, Γ  represents time to frequency 
translation matrix which in practice is implemented using 
numerically efficient FFT, is the diagonal matrix 
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The NM nonlinear algebraic equations (6) are solved by 

applying Newton's method. The iteration equation is 
 

( ) ( 1) ( ) ( )ˆ ˆ ˆ ˆ ˆ( )( ) (l l l lJ V V V F V+ − = −                                 (8) 
 
where  is the Newton iteration index. The l-th Newton 
Jacobian is 

l

 
( ) 1 1 1ˆ( )lJ V C G− −=ΓΛΓ ΩΓ Γ +Γ Γ                                                        (9) 

 
In the above equation C is a block diagonal matrix with 

blocks ˆ( ( ( )))i
i

dq v tC dv
λ= and G is a block diagonal 

matrix with blocks ˆ( ( ( )))i
i

df v tG dv
λ=  . The iteration 

equation is solved by Krylov-Subspace methods [8]. 
 

3  ITERATIVE GRID SELECTION 
STRATEGY 

 
The time-map function λ, which maps the uniform grid in 
pseudo-time to the non-uniform grid in the real time, 
critically affects the efficiency of the TMHB method. In 
order to preserve the spectral accuracy of the TMHB method, 
the time-map function must be smooth enough, at least as 
smooth as the functions describing the device models. 
Nastov develops an iterative grid selection strategy to 
determine S non-uniform real time points which are used to 
construct the time-map function [6]. 

The initial solution is obtained by solving (1) with a loose 
convergence tolerance. The time step is set as 1m m mh t t+= −  
and mh  needs to satisfy 
 

1

S

m
m

h T
=

=∑                                                                          (10) 

 
The monitor function R which describes the changes of 

the initial guess solution is 
 

1| ( ) ( ) |
m ax ( )j m j m

m j
m j

v t v tTR
h F

+ −
=                                   (11) 

 
where is the initial guess solution of the j-th circuit 
equation, and  are the solution weights. 

jv

constantm mR h

jF

The time step  adapts in the following way: mh
 

=                                                        (12)   
 
for m =1, 2, …, (S-1). 

Solving the nonlinear system of (10) and (12) by Newton 
iteration, we get the real distribution of the grid and construct 
the time-map function. 

This grid selection strategy presents some limits: ① the 
time step changes fast during the regions with rapid 
transitions which causes numerical instability. ②  The 
monitor function features the regions which do not have real 
rapid transitions and makes  change irregularly. This 
brings error during the transform between time domain and 
frequency domain. 

mh

A new iterative grid selection is developed by 
constructing a new monitor function which is referred to the 
adaptive grid methods based on [9-10]. Determining the 
sharp features (rapid transitions) is carried out as follows: the 
value of mR  in each grid from (11) is compared with the 
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values in each of the adjacent grids. If the value of  is the 
maximum of the three, and bigger than the cut-off value, 
then the feature is accepted.  We let 

mR

 
j

j mS R=                                                                              (13) 
 
where j is the index of mR  which satisfies the requirements 
above. 

The smooth monitor function is defined ： 
 

2 21

1
( )

fn
j

m
j

m j

S
S

t xμ=

= +
− +

∑
1

                                         (14) 

 
where fn  is the number of sharp features, jx  is the 

time point corresponding to the real sharp feature of ,jS μ  
is the parameter determining the smoothness of the grid. 
Replacing  mR  with  in (12): mS
 

constantm mS h =                                                               (15) 
 
for m =1, 2, …, (S-1). 

Then the appropriate grid is got by solving the nonlinear 
system of (10) and (15) using the Newton iteration. 
Combining this non-uniform grid with its corresponding 
uniform grid, a smooth time-map function λ   is obtained by 
(2). 

Some remarks can be made. Firstly, the predefined cut-
off value is used to determine the number of the real sharp 
features. For circuits where the nonlinearities are moderate, 
the value of  will be all smaller than the cut-off value. 
There will be no sharp features and obtain a set of uniform 
grids. Secondly, the parameter μ is used to determine the 
smoothness of the grid, which is as increased as the 
nonlinearities of the circuits. Thirdly, the strategy proposed 
can get a smooth monitor function, which only features the 
rapid transitions and do not contain the normal changes in 
the solution waveform. 

mR

 
4  NUMERICAL EXPERIMENT 

 
The new iterative grid selection strategy introduced in the 

previous section is implemented in our MATLAB-based 
circuit simulator. Then the result is showed on the strongly 
nonlinear power-supply circuit (Fig.1) which is common 
used in circuit simulation [11-13]. The Nastov's iterative grid 
selection strategy (TMHB-1) and the iterative grid selection 
strategy we proposed (TMHB-2) are compared in Fig.2. The 
number of grid points for the iterative strategy is S = 50, and 
the exact solution is computed using standard HB method 
with K = 500. The plots demonstrate that the new iterative 
grid selection strategy (TMHB-2) is more successful than the 
Nastov's iterative grid selection strategy (TMHB-1). 

 

Fig.1 Power-supply circuit Parameters:C1=1μF, 
C2=C3=1mF,L1=0.1H,R1=5Ω,R2=1kΩ. 
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Fig.2 Steady-state response of VC2 in power supply 

computed with K=15.
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Fig.3The time-steps of iterative grid selection strategies:  
(A)TMHB-1; (B) TMHB-2. 

Fig.3 and 4 show the detail of time-steps, it is illustrated 
that the Nastov's iterative grid selection strategy excessively 
increases grids in the regions which do not have sharp 
features and the ratios of neighboring time-steps are bigger 
which can cause numerical instability. The strategy we 
proposed solved this problem: the set of grids that our 
strategy generates not only catches the sharp features, but 
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also changes much smoother and more stable with smaller 
ratios of neighboring time-steps. 
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Fig.4 The ratios of neighboring time-steps of iterative grid 
selection strategies: (A) TMHB-1; (B) TMHB-2. 

 
5  CONCLUSION 

 
In this paper an efficient iterative grid selection strategy 

is proposed for the Time-Mapped Harmonic Balance method. 
This strategy is compared with the Nastov's iterative grid 
selection strategy and the results show the algorithm is more 
stable and accurate. This new iterative grid selection strategy 
makes the Time-Mapped Harmonic Balance method more 
practical. 
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