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We introduce a renormalized 1PI vertex part scalar field theory setting in momentum space to
computing the critical exponents ν and η, at least at two-loop order, for a layered parallel plate
geometry separated by a distance L, with periodic as well as antiperiodic boundary conditions on the
plates. We utilize massive as well as massless fields in order to extract the exponents in independent
ultraviolet and infrared scaling analysis, respectively, which are required in a complete description of
the scaling regions for finite size systems. Avoiding the crossover regimes, the three regions of finite
size scaling present for each of these boundary conditions are shown to be indistinguishable in the
results of the exponents in periodic and antiperiodic conditions, which coincide with those from the
(bulk) infinite system.
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Finite-size effects manifest themselves generically
whenever particles or fields are confined within a given
volume whose limiting surfaces are separated by a certain
distance L. Their size and shape can affect key properties
of the system in comparison with those obtained from
the L → ∞ limit (“bulk system”). Perhaps the most
investigated aspects are related to critical properties of
finite systems [1,2], where field-theoretic methods can be
employed in the vicinity of the phase transitions taking
place in the system under consideration. Experimentally,
the simplest realization of such critical behavior and the
role played by the finite size corrections show up in par-
allel plate geometries, for instance, in coexistence curves
of critical films of certain fluids [18] as well as superfluid
transition features (e.g., specific heat amplitudes) in con-
fined 4He [4,5]. From the theoretical viewpoint, field the-
ory studies have been put forth to explain these effects
not only for 4He [6], but also in thin slabs [7,8] formed
by wetting phenomena [9]. The Casimir effect has also
been investigated in superfluid wetting films [10]. Plus,
the recent study of some microscopic properties of finite-
lenght cobalt nanowires [11] reveals that the influence of
the finiteness is a ubiquitous theme in several properties
of physical systems.

Momentum space ǫ-expansion description of critical
properties of finite size systems was presented some time
ago by Nemirovsky and Freed (NF ) [12]. The simplest
approach uses a parallel plate geometry, whose plates
are of infinite extent along (d− 1) spatial directions sep-
arated by a distance L. They are subject to geometric
restrictions in the form of (periodic, antiperiodic, Dirich-

let and Neumann) boundary conditions which are imple-
mented in the bare propagator. The limitation caused
by the boundary conditions provides a scaling variable
L

ξ∞
, where ξ

∞
is the (bulk) correlation length of the in-

finite system. For generic boundary conditions, it was
conjectured that there could exist three regions induced
by the limitation, when: a) L

ξ∞
> 1 where perturba-

tive methods can be applied and the physics is quasi
d-dimensional, characterized by bulk critical exponents;
b) L

ξ∞
= 1 and the behavior is neither d-dimensional nor

(d−1)-dimensional; c) L

ξ∞
< 1 where the physics is almost

(d − 1)-dimensional and usual perturbation expansions
break down.

In this Letter, we compute the critical exponents η and
ν in finite size scaling using the NF method in momen-
tum space, at least up to two-loop order, from a purely
analytical perspective when the limiting surfaces sepa-
rated by a distance L are parallel plates whose order
parameter obey either periodic (PBC) or antiperiodic
(ABC) boundary conditions on them. We utilize massive
fields obeying these boundary conditions on the plates for
nonvanishing values of L corresponding to fixed finite val-
ues of the bulk correlation length. Region a) can be de-
scribed satisfactorily in the limit L → ∞ within this mas-
sive framework. The remaining regions are treated with
massless fields having infinite bulk correlation length.
Situation b) is associated to the limit L ∼ ξ

∞
→ ∞,

whereas the c) alternative naturally describes arbitrary
finite values of L. The universal results obtained are valid
for the three regions determined by the boundedness vari-
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able L

ξ∞
with arbitrary nonzero values of L. The physics

of the systems in the three regions is actually quasi d-
dimensional, for the bulk critical exponents are recov-
ered from the finite size evaluation irrespective of the
boundary condition and the value of L. Moreover, we
find that there is no breakdown of the ǫ-expansion into
region c). The main meaning of our labor, apart from the
fact that it represents important progress in the investi-
gation of criticality in parallel plate geometries, is that it
illustrates the power of the momentum space approach in
the study of finite size systems. The momentum conser-
vation within the region between the plates is responsible
for keeping the bulk critical behavior in PBC and ABC.

The layered system can be described by the bare La-
grangian density

L =
1

2
| ▽ φ0|

2 +
1

2
µ2

0φ
2

0 +
1

4!
λ0φ

4

0, (1)

where φ0, µ0 and g0 are the bare order parameter, mass
(square root of the bare reduced temperature) and cou-
pling constant, respectively [13]. The coordinates are
split in the form x = (�ρ, z) where �ρ is a (d − 1)-
dimensional vector characterizing the surface of each
plate (arbitrarily placed at z = 0 and z = L) perpen-
dicular to the z direction; the field satisfies φ0(z = 0) =
φ0(z = L) for periodic boundary conditions, whereas
φ0(z = 0) = −φ0(z = L) for antiperiodic boundary con-
ditions. The order parameter can be expanded in Fourier
modes as φ0(�ρ, z) = Σj

∫

dd−1kexp(i�k.�ρ)ui(z)φ0i(�k),

where �k is the momentum vector associated to the (d−1)-
dimensional space, uj(z) are the normalized eigenfunc-

tions of the operator d
2

dz2 whose eigenvalues κj defined by

−
d
2
uj(z)

dz2 = κ2

j
uj(z) are called the quasi-momentum along

the z-direction. In addition, the eigenfunctions obey the
relations Σjuj(z)uj(z

′) = δ(z−z′) and
∫

dzuj(z)uj′(z) =
δjj′ . Note that κj = σ(j + τ), where σ = 2π

L
, j =

0,±1,±2, ..., the label τ = 0 corresponds to PBC and
τ = 1

2
to ABC. The Feynman rules are modified as

follows: beyond the standard tensorial couplings of the
infinite theory corresponding to a N component order
parameter, each momentum line (propagator) must be
multiplied by δj1j2 and the vertices are multipled by
the tensor Sj1j2j3j4 =

∫

dzuj1(z)uj2(z)uj3(z)uj4(z). The
eigenfunctions actually depend on τ and can be writ-

ten as u
(τ)

j
(z) = L−

1
2 exp(iκjz) which implies Sj1j2j3j4 =

L−1δj1+j2+j3+j4,0. For each momentum integral in
the infinite system perform the substitution

∫

ddk →
Σ∞

−∞

σ
∫

dd−1k. The bare massive free propagator (µ2

0
�=

0) for either boundary condition is given by the expres-

sion G
(τ)

0
= 1

k2+σ2(j+τ)2+µ
2
0
.

Considering an arbitrary 1PI divergent bare vertex
part including composite operators Γ(N,M) ((N, M) �=
(0, 2)), the statement of multiplicative renormalizabil-
ity amounts to finding renormalization functions Zφ, Zφ2

such that the vertex parts defined by Γ
(N,M)

R
=

Z
N
2

φ
ZM

φ2Γ(N,M) are automatically finite.
In the massive framework, the primitive divergent ver-

tex parts of this λφ4 field theory are chosen to be renor-
malized in the standard way [13], with the choice that
the renormalized mass µ be independent of the bound-
ary condition. Setting the symmetry point at zero ex-
ternal momenta for all renormalized quantities, µ is de-

fined by the relation Γ
(2)

R
(k = 0, j = 0, g, µ) = µ2 + σ2τ2

[6], where g is the renormalized coupling constant de-

termined by Γ
(4)

R
(k = 0, j = 0, g, µ) = g. In addition,

Γ
(2,1)

R
(k = 0, j = 0, g, µ) = 1. These conditions are suf-

ficient to formulate all vertex parts which can be renor-
malized multiplicatively. Recalling that the infrared di-
vergences are absent in the massive theory, we analyze
the theory at the ultraviolet region where the momen-
tum of the internal propagators in arbitrary loop graphs
are very large, i.e., at the scaling region p

µ
→ ∞ [14].

The one-loop integral contributing to the four-point
function is then given by:

I
(τ)

2
(k′, i; σ, µ) = σΣ∞

j=−∞

∫

dd−1q 1

[(q)2+(σ)2(j+τ)2+µ2]

× 1

[(q+k′)2+(σ)2(j+i+τ)2+µ2]
. (2)

Performing the transformation p′ = p

µ
in all momenta

present in the diagram and defining r = σ

µ
∝ ( ξ

L
), we

use Feynman parameters to resolving the integral over q.
Then, the remaining summation turns out to be propor-
tional to the generalized thermal function [15]

Dα(a, b) = Σ∞

n=−∞

[(n + a)2 + b2]−α

=
√

π

Γ(α)
[
Γ(α−

1
2 )

b2α−1 + fα(a, b)], (3)

with fα(a, b) = 4
∑

∞

m=1
cos(2πma)(πm

b
)α−

1
2 K

α−

1
2
(2πmb),

and Kν(x) is the modified Bessel function of the second
kind. Whenever we perform a loop integral, the area of
the unit sphere Sd naturally takes place and this angular
factor can be neutralized in a redefinition of the coupling
constant. We adopt this procedure henceforward in all
loop integrals and suppress this overall factor. We then
find

I
(τ)

2
(k′, i; σ, µ) = µ

−ǫ

ǫ

(

(1 − ǫ

2
)
∫

1

0
dx[x(1 − x)(k′2

+ r2i2) + 1]−
ǫ
2 + ǫ

2
F

(τ)

1+ǫ
2

(k′, i; r)
)

, (4)

where F
(τ)

α (k′, i; r) =
∫

1

0
dxfα

(

τ + xi, h(k′, i, r)
)

and

h(k′, i, r) = r−1
√

x(1 − x)(k′2 + r2i2) + 1. At the sym-
metry point k′ = i = 0, without loss of generality
we can choose µ2 = 1, such that r = σ. We find

I
(τ)

2
(0, 0; σ, 1) = 1

ǫ

(

(1 − ǫ

2
) + ǫ

2
f 1

2
(τ, σ−1)

)

. The sim-
plest trend to proceed hereafter is to compute the re-
maining massive diagrams at these values of parame-
ters. The limit r → 0 neatly represents the region a)
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(L → ∞ with ξ fixed), where both F
(τ)

1+ǫ
2

(k′, i; σ = 0) and

f
(τ)

1+ǫ
2

(k′, i; σ = 0) tend to zero.

The two-loop graph of the four-point function

I
(τ)

4
(0, 0; σ, 1) in terms of the integral I2(τ)(0, 0, σ, 1)

reads

I
(τ)

4
(0, 0; σ, 1) = σΣ∞

j=−∞

∫

dd−1q

I
(τ)

2
(q, j; σ, 1)

[(q)2 + (σ)2(j + τ)2 + 1]2
. (5)

It can be carried out similarly and results in the expres-

sion I
(τ)

4
(0, 0; σ, 1) = 1

2ǫ2

(

(1 − ǫ

2
) + ǫf 1

2
(τ, σ−1)

)

.
Next, we need the two-point function diagrams. The

calculation of the derivative of the two-loop “sunset” di-

agram I
(τ)

3
and the three-loop diagram I

(τ)

5
with respect

to k′2 denoted by I
′(τ)

3
and I

′(τ)

5
(at null k′), respectively,

are required. In terms of the building block I
(τ)

2
(k′, i; σ, 1)

we can write

I
(τ)

3
(k, i; σ, 1) = σΣ∞

j=−∞

∫

dd−1q

I
(τ)

2
(q + k, j + i; σ, 1)

[(q)2 + σ2(j + τ)2 + 1]
, (6a)

I
(τ)

5
(k, i; σ, 1) = σΣ∞

j=−∞

∫

dd−1q

[I
(τ)

2
(q + k, j + i; σ, 1)]2

[(q)2 + (σ)2(j + τ)2 + 1]
. (6b)

Now F
(τ)

α,β
(k, i; σ) ≡ 1

Sd
σΣ∞

j=−∞

∫

dd−1q
F

(τ)
α (q+k,j+i;σ,1)

[(q)2+(σ)2(j+τ)2+1]β
,

such that F
′(τ)

α (σ) =
∂F

(τ)
α,1(k,i;σ)

∂k2

∣

∣

(k,i)=0
. The parametric

integrals

I(τ)(σ) = −2
∫

dxdyy ×

ln
[

y(1 − y)τ2σ2 + y + 1−y

x(1−x)

]

− 1

2
, (7a)

G(τ)(σ) = 2
∫

dxdyy ×

f 1
2

(

yτ,
√

y(1 − y)τ2 + σ−2y + σ−2(1−y)

x(1−x)

)

, (7b)

will also be requested. Evaluation of the integrals yield

the values I
′(τ)

3
(0, 0; σ, 1) = − 1

8ǫ

(

1 − ǫ

4
+ ǫW (τ)(σ)

)

and I
′(τ)

5
(0, 0; σ, 1) = − 1

6ǫ2

(

1 − ǫ

4
+ 3ǫ

2
W (τ)(σ)

)

, where

W (τ)(σ) = I(τ)(σ) + G(τ)(σ) − 4F
′(τ)

0
(σ).

From the eigenvalue condition β(u
∞

) = 0, we learn
that the repulsive ultraviolet fixed point is given by

u
∞

=
( 6

N + 8

)

ǫ
[

1 + ǫ
( 9N + 42

(N + 8)2
+

1

2
(1 − f 1

2
(τ, σ−1))

)]

.

(8)

At three-loop order, the function responsible for the
anomalous dimension of the field

γ
(τ)

φ
(σ, u) =

(N + 2)

72
u2

[

1 −
ǫ

4
+ ǫW (τ)(σ)

−
N + 8

6
(1 + W (τ)(σ) − f 1

2
(τ, σ−1))u

]

, (9)

is actually dependent upon the boundary condition, but
turns out to become insensitive to them at the fixed
point. Indeed, γ

(τ)

φ
(σ, u

∞
) = η = (N+2)

2(N+8)2
ǫ2

{

1 +

ǫ
[

6(3N+14)

(N+8)2
− 1

4

]}

. The same happens to the composite

field Wilson function, given explicitly by the expression

γ
(τ)

φ2 (σ, u) =
(N + 2

6

)[

1 −
ǫ

2
(1 − f 1

2
(τ, σ−1))

]

u

−
(N + 2)

12
u2, (10)

which at the fixed point results in the expression

γ
(τ)

φ2 (σ, u
∞

) = (N+2)

(N+8)
ǫ
[

1 + ǫ (6N+18)

(N+8)2

]

. Using the scal-

ing relation ν−1 = 2 − η − γ
(τ)

φ2 (σ, u
∞

), we find ν =

1

2
+ N+2

4(N+8)
ǫ + (N+2)(N

2
+23N+60)

8(N+8)3
ǫ2.

In the massless approach the bulk correlation length
is infinite, so infinite values of L will lead to the sit-
uation L

ξ∞
→ 1, whereas finite values of L represents

the region L

ξ∞
→ 0. The scaling region now occurs

in the infrared regime. The bare free critical propaga-

tor is now G
(τ)

0
= 1

k2+σ2(j+τ)2
. The renormalized ver-

tices are defined as before, but the symmetry point of
the renormalized theory must be chosen at nonvanish-
ing external momenta along (d − 1) spatial directions,
say κ [13], and external quasi-momentum j = 0. The

two-point function is renormalized according to Γ
(2)

R
(k =

0, j = 0, g, 0) = σ2τ2, where g is the renormalized cou-

pling determined by Γ
(4)

R
(ki, j = 0, g, µ)|SP = g and

Γ
(2,1)

R
(κ, j = 0, g, 0)|

S̄P
= 1. We fix the scale of the ex-

ternal momenta at the symmetry point as κ2 = 1. It is
important to emphasize that the same angular factor al-
ready discussed in the massive theory appears every time
we perform a loop integral and shall be absorbed from
now on in a redefinition of the coupling constant just as
before.

We are left with the computation of the massless in-
tegrals Eqs. (2), (5), (6) for nonvanishing external mo-
menta, which are even simpler than their massive coun-
terparts. When the value of the diagrams are substituted
back in the β-function, the condition β(u∗) = 0 yields the
trivial solution u∗ = 0 as well as the attractive infrared
nontrivial fixed point, namely

u∗ =
( 6

N + 8

)

ǫ
[

1 + ǫ
( 9N + 42

(N + 8)2
−

1

2
(1

+F̃
(τ)

0
(k2 = κ2 = 1, i = 0))

)]

, (11)

where

F̃
(τ)

β
(k, i) =

∫

1

0

dxfβ

(

τ + ix, h̃(k, i, σ)
)

, (12)
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and h̃(k, i, σ) =
√

x(1 − x)(i2 + k2

σ2 ). The other defini-

tions are exactly the same as in the massive approach
where a quantity, say F is replaced by its massless

counterpart F̃ . Finally, define the object F̄
(τ)

β
(k) =

σ−2β
∫ 1

0
dyy(1 − y)

β

2 f 1
2+β

(yτ, h̃(k, i = 0, σ)). At k2 =

1, i = 0, the combination W̃ (τ) = 1

2
ln[1+σ2τ2]+2F̃ ′

(τ)

0 −

F̄
(τ)

0
is worthwhile. In fact, the Wilson functions read:

γ
(τ)

φ
(u) =

(N + 2)

72
u2

[

1 +
5ǫ

4
− 2ǫW̃ (τ) −

(N + 8)

12
(1

− 4W̃ (τ) − 2F̃
(τ)

0
(k2 = κ2 = 1, i = 0))u

]

, (13a)

γ
(τ)

φ2 (u) =
(N + 2)

6
u(1 +

ǫ

2

+
1

2
ǫF̃

(τ)

0
(k2 = κ2 = 1, i = 0) −

u2

2
). (13b)

When these functions are computed at the fixed point,
the same critical exponents ν and η arise independent
of the boundary conditions. Therefore, we proved the
equivalence of the infrared and ultraviolet scaling regimes
for finite systems using PBC and ABC, i.e., the re-
sults are valid independently of the limitation parameter
L

ξ∞
, provided the crossover regions where the ǫ-expansion

breaks down is avoided.
In conclusion, our findings represent cutting-edge re-

sults for this field-theoretic momentum space computa-
tion of observables using finite size arguments at least up
to two-loop level, formulated with normalization condi-
tions for the renormalized two-point vertex parts which
depend on the boundary conditions. They shall pave the
road to compute amplitudes in massive as well as mass-
less framework at higher orders in renormalized pertur-
bation theory [16]. The detailed discussion of the pic-
ture presented here, including the minimal subtraction
procedure in the massless formalism will be published
elsewhere.

It would be interesting to carry out the same analysis
at least at two-loop order in more complicated situations
involving Dirichlet and Neumann boundary conditions,
since they are more appealing from the phenomenologi-
cal viewpoint. They characterize free surfaces [17], which
disturb further the system due to the breaking of trans-
lational invariance along the finite directions. We expect
that boundedness independence can also be achieved in
Dirichlet and Neumann boundary conditions, provided
the dimensional crossover regimes (already verified ex-
perimentally in thin films of a critical mixture of 2,6-
lutidine+water [18]) is avoided likewise. New features
appear due to nonconservation of the quasi-momentum
for those cases which deserve a careful treatment.

Finally, it would be desirable to adapt the description
worked out herein to the case of competing systems of the
Lifshitz type [19–21]. It remains to be seen if the compet-
ing axes with arbitrary momentum powers permit exact
results when the finite size direction points along any of

them.
JBSJ would like to thank CNPq from Brazil for finan-

cial support.
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