
iSugar: A Systems Design Framework that Integrates

Lumped, Distributed, and System Analyses

Prabhakar Marepalli
1
, Jason V. Clark

1,2,3

1
School of Mechanical Engineering,

2
School of Electrical and Computer Engineering,

3
Discovery Park, Purdue University, West Lafayette, Indiana, USA

ABSTRACT

We present a systems design framework called iSugar

that integrates lumped, distributed, and system level

analyses in a Matlab environment. For lumped analysis we

use Sugar for its ease of device configuration,

parameterization, and layout capabilities; for distributed

analysis, we use COMSOL for its transparent interface; and

for system analysis we use SIMULINK for its simple

graphical building-block style of modeling. We also
accommodate SPICE circuit analysis. For modeling some

systems more completely, it may be necessary to model

components of the system using different numerical

methods so that computational efficiency is optimized

without sacrificing model accuracy. A few commercial

tools have the ability to integrate with MATLAB and be

controlled by SIMULINK. However, iSugar has the ability

to control all aspects of the integration from within itself.

Doing so facilitates a more holistic approach to design and

analysis. We demonstrate several benefits gained from

Sugar’s efficient and versatile capabilities.

Keywords: Lumped analysis, distributed analysis, system

analysis, Sugar, SPICE, layout

1 INTRODUCTION

Comprehensive MEMS design and analysis often
requires a complicated mix of multiple modeling domains

and numerical methods. Modeling domains might include

electrical circuits, mechanical flexures, electromagnetic

radiation, noise, packaging, temperature, pressure, non-

inertial forces, various parasitics, and coupling between the

domains. An example of such coupling is electrical current

passing through a flexure. As the structure heats and

expands, its resistivity and resonance frequency will be

affected. Although theoretically possible, it is not

computationally efficient to represent every aspect of a

system using large sets of partial differential equations.

Depending on the level of analysis required, some solutions
methods provide good computational efficiency at the cost

of losing high-order detail. It is this level of detail that an

analyst typically considers when determining which

methods to use when modeling various system components.

There are many stages in a design cycle. These might

include modeling, simulation, optimization, layout

generation, process design, system integration, fabrication,

calibration, and performance testing. Due to the diverse

methodologies involved in handling each stage, specialty

CAD tools are often used. To name a few, there are tools

that specialize in multiphyiscal distributed [1], [2]; that

specialize in layout [3], [4]; that specialize in circuit
analysis include [5], [13]; and that specialize in system

level analysis [6], [14]. At times it may be necessary to

create different versions of the same device if working

between modeling domains. CAD for MEMS tools such as

[7] and [8] have addressed this need by being able to plug

into Cadence, MATLAB, SIMULINK, and others.

Without a hierarchical tool to facilitate seamless

integration between a system of tools, a holistic approach to

analysis can be difficult. This need is being addressed in

iSugar with its ability to fully configure and control all

aspects of lumped, distributed, and system level integration
within the iSugar tool itself. That is, the efficiency and

versatility our MEMS netlist language can be used to not

only configure advanced structural designs, but can also be

used to specify SPICE circuits, configure the geometry and

boundary conditions for components that require distributed

or finite element analysis (FEA), control SIMULINK

elements, and layout the resulting device for fabrication.

Multi-objective optimization features are also available in

iSugar, including the ability to determine geometry given

desired performance. To facilitate user-modifications,

iSugar is open source. Our tool should appeal to users that

desire Sugar-style MEMS design with the addition of more
sophisticated modeling capabilities.

The rest of this paper is organized as follows: In Section

2 we present the integrated tool framework of iSugar. In

Section 3 we describe the methodologies used to integrate

each component of our framework. In Section 4 we discuss

on how this framework might be useful to the MEMS

community. And we summarize this effort in Section 5.

2 FRAMEWORK

Our objective with iSugar is to explore extending

Sugar’s versatile design methodology into areas that are

better modeled by distributed analysis, control theory,

digital signal processing, etc. Previously, Sugar’s modeling

capabilities were limited to parameterized lumped models,

which meant that models for systems components had to

already exist. Although many MEMS can be decomposed

into a small set of commonly-used components, such as
small deflection flexures, linear comb drives, and simple

plates, more complex components such as those with

unusually-shaped structures, or those requiring fluid

NSTI-Nanotech 2011, www.nsti.org, ISBN 978-1-4398-7139-3 Vol. 2, 2011694

Figure 1: iSugar framework. Arrows indicate data flow

directions. By hiding the complexities involved in finite element
analysis and layout packages, this framework simplifies and
quickens the MEMS design and engineering path from idea to
fabrication. The user just needs to create a MEMS design using
Sugar’s simple netlist description language. The system may be
controlled from within the netlist or through SIMULINK. Though
seamless integration, COMSOL FEA models are automatically
generated through iSugar and the resulting building COMSOL

building block is available in SIMULINK. Finalized designs may
be exported to layout in GDS-II format for fabrication.

dynamics or electrodynamics, could not be fully

accommodated in earlier versions of Sugar. The present

version is seamlessly integrated through Sugar. That is, it is
not necessary for the user to learn how to use the other tools

that iSugar is integrated with to take advantage of their

benefits. Although iSugar is readily available and open

source, the tools that we have integrated it with (MATLAB,

SIMULINK, and COMSOL) are available commercially.

COMSOL is a distributed analysis tool that is based on a

finite element analysis (FEA). It has a wide range of

capabilities to model and simulate multiple energy

domains, which is especially important in a field like

MEMS. The accuracy of complicated models computed by

COMSOL is usually better than those computed by Sugar;

however, Sugar is usually more accurate for very simple
models if they can accurately be expressed analytically,

which can be directly implemented in Sugar. A useful

feature in COMSOL that we exploit is COMSOL Script,

which is based in MATLAB. That is, every operation in

COMSOL can be performed from MATLAB’s workspace.

This allows users to effectively control all COMSOL

capabilities from within iSugar. This also allows

parameterized designs that are difficult or too time-

consuming to configure within COMSOL to be easily

configured in iSugar and then seamlessly imported into

COMSOL.
SIMULINK is a system-level simulation tool that is

based in MATLAB. It uses graphical building-blocks to

configure systems. SIMULINK has a large library of

building blocks that span a wide variety of modules

including control theory, digital signal processing,

COMSOL, Sugar, etc. For instance, SIMULINK can be

used to impart feedback and control signals, or

environmental disturbances such as non-inertial forces,

temperature fluctuations, or noise, etc. Like COMSOL,

SIMULINK operations can also be carried out the

MATLAB workspace, which we exploit with iSugar. The

seemless integration of iSugar with SIMLINK allows for

parametric optimization of the MEMS component as its

performance is explored in a more complete system.

It is often the case that optimizing single components

alone does not yield an optimized system with the

components assembled. However, iSugar allows the user to
explore a more holistic approach to system analysis. We

show iSugar’s framework in Figure 1, which indicates data

flow directions between its integrated packages.

3 METHODOLOGY

3.1 Integration of Sugar with COMSOL

Configuring geometries in COMSOL and many other

CAD tools is typically done by using geometric Boolean

arithmetic. That is, there is a basic set of parameterizable

shapes, such as spheres, boxes, etc., and by applying a

combination of translations, rotations, unions, intersections,

etc., a desired structure is obtained. This common method
of construction can be difficult and time-consuming for

intricate structures like many MEMS. Parameterization is

also difficult because shapes are usually positioned on a

global, rather than local, reference frame; and sometimes

the number of shapes may need to change. For instance, if

the lengths of flexures change, then the elements that they

are connected to may need to be repositioned automatically.

Or if the number of comb fingers needs to change, shapes

may need to be created or deleted automatically.

To overcome this limitation, we developed an algorithm

called cho2comsol that converts geometry configured in

Sugar into geometry that can be imported into COMSOL.
We have previously reported on the efficiency and ease of

configuring geometries using a parameterized Sugar netlist

in [9], where an advanced MEMS with over one thousand

shapes was configured using about 20 lines of netlist code.

With our conversion algorithm, users can more efficiently

define their intricate geometries in Sugar and import them

in to COMSOL for finite element analysis. For example, in

Figure 2 we show a microrobot design that was configured

in Sugar and then imported into COMSOL. It is important

to note that modifying this design is very easy to do Sugar,

yet very difficult to do in COMSOL.

Figure 2: Sugar to COMSOL. Creating intricate geometries in
many FEA tools can be time-consuming. And making them
parameterizable can be difficult. However, doing so in Sugar is
quick and easy. We show a microrobot from [11] that was easily

configured in Sugar and then easily imported in COMSOL.

SUGAR
Subnets, 3D Display, Parameterization, Optimization

SIMULINK
System level A/D Control

GDS-II

COMSOL
Finite Element Analysis

Sugar COMSOL

NSTI-Nanotech 2011, www.nsti.org, ISBN 978-1-4398-7139-3 Vol. 2, 2011 695

Using Sugar’s set of parameterized geometries we

create corresponding geometries in COMSOL as follows.

COMSOL has a scripting language based in MATLAB.

Each geometry object in COMSOL may be defined by a

geometry function that describes its shape. For example,

rect2 for a 2D rectangle, circ2 for a 2D circle, etc. [10].

Parameters to these functions include dimensions, position,
orientation, etc. Similarly, there are COMSOL Script

commands for defining material properties such as Young’s

modulus, etc.; and boundary conditions such as fixed, free,

roller, electric potential, etc. Our Sugar-to-COMSOL

algorithm can automatically generate the required

COMSOL Script file for each geometric object that is

configured in Sugar. However, since Sugar also does

layout, some layout-specific geometries are optionally

converted to COMSOL. For example, large wire bonding

pads and tracers are often not converted over. This is

because the dynamics of such objects are usually not

required and their presence in COMSOL would be a large
computational expense.

3.2 Verification of Lumped Analysis

Although lumped analysis is much more

computationally efficient than distributed analysis, this is

usually done at the cost of refined information. For

example, distributed analysis often provides temperature,

charge, and stress distributions on structures; yet, lumped

analysis is often limited to the effective equivalent

information lumped at the nodes. Moreover, lumped modes

are often created by reducing various types physics

involved in the problem to the bare minimum. So

determining the accuracy and limits of lumped models is

often necessary; and even more so, determining the
accuracy and limits of a system of lumped models due to

possible proximity effects is often necessary.

Such verification can be done more easily than before

using iSugar. This is because we are able to not only import

geometric and material properties from Sugar to COMSOL

as discussed in Section 3.1, but we also have automated the

application of actuation efforts, meshing, and solver

analyses. In this way, after configuring a design in Sugar,

users may automatically verify their assembled models and

simulations in iSugar. Although this process requires the

user to have the COMSOL engine, iSugar’s automation
implies that the user is not required to have expertise in the

use of COMSOL.

We show an example of iSugar’s automatic verification

in Figure 3. After a serpentine-flexure structure created in

Sugar (with just 9 lines of netlist text) is automatically

exported into to COMSOL, boundary conditions applied,

meshed, and simulated, all with just a single command

within the MATLAB workspace or within SIMULINK.

3.3 Integration of Sugar with SIMULINK

A goal of MEMS designers is to predict the

performance of their systems under realistic operating

Figure 3. Verifcation of Lumped Analysis. An example of
lumped analysis verification with distributed analysis is shown. A

lumped model of a serpentine flexure is shown in (a) using just 9
lines of netlist text. This lumped model can be automatically
converted into COMSOL for distributed analysis, as shown in (b).
This conversion process includes positioning and rotating
structural elements, applying contraint and effort boundary
conditions, meshing, selecting solver and solver parameters, and
plotting generation the results. This conversion is done with a
single command in MATLAB; i.e. no interaction with COSMOL

is required by the user. In regards to the validation of static
displacement for this model, the relative error of Sugar with
respect to COMSOL is 3.3%.

conditions. Modeling such systems more completely than

convention includes interface electronics, packaging,

temperature variations, external vibrations, electromagnetic

radiation, non-inertial forces, etc. A system level simulation
tool can be used to efficiently control such disturbances,

since such sources do not require as detailed modeling as

the MEMS structure. In iSugar we integrate Sugar with

SIMULINK by implementing a SIMULINK Sugar-block.

These blocks can be used to perform different Sugar

operations like simulating static, modal, and transient

performance of MEMS, displaying the MEMS in their

deflected states, etc.

(a) Sugar: Lumped Analysis

Created by user

(b) COMSOL: Distributed Analysis

Automatically created by iSugar

Displacement = 121 microns

Displacement = 124.98 microns

NSTI-Nanotech 2011, www.nsti.org, ISBN 978-1-4398-7139-3 Vol. 2, 2011696

Figure 4. Integrating Sugar to SIMULINK components. With
the integration of Sugar to COMSOL and SIMULINK, iSugar
shares the Sugar’s ease of use, COMSOL’s depth in simulating

multi-energy domain problems, and SIMULINK breadth in
solving system level problems. In this example, we show a Sugar
block can be integrated to a system level circuitry inside
SIMULINK.

 In use, the user is able to interconnect one or more

Sugar blocks of MEMS, one or more COMSOL blocks, and

a host of other SIMULINK blocks to emulate a more

complete system. In Figure 4, we show an example of a

system level configuration in SIMULINK that connects

control circuitry to a MEMS Sugar block. The output of the

Sugar block is defined by the user. For instance, the output

might be the mechanical deflection of node, resonance
amplitude, capacitance of a comb drive, etc.

3.4 Integration of Sugar with SPICE

SPICE [5] is a popular tool known for its breadth in

simulating integrated circuits. Sugar was initially created to

be a MEMS version of SPICE. In iSugar, we integrate
Sugar with SPICE by enabling the user to write pure SPICE

netlist syntax within a Sugar netlist. A pre-processor

separates the SPICE circuit part of the netlist from MEMS

part. Once these partitions are identified, either one or both

of the MEMS structure and or SPICE circuitry can be

imported and simulated in COMSOL. That is, COMSOL

includes a SPICE simulation engine.

4 CONCLUSION

In this paper we presented our systems design

framework called iSugar that integrates lumped, distributed,

and system level analyses. Sugar is the tool used for lumped

analysis, COMSOL is used for distributed analysis, and

SIMULINK for system level simulation. A common

attribute in these tools is that their scripting is based in

MATLAB, which we exploit in iSugar to seemlessly

integrate these tools. With iSugar users are also able to
integrate SPICE analysis and layout in GDS-II format. The

automation and control of these tools through iSugar is

expected to enable greater efficiency and versitility in

modeling MEMS.

REFERENCES

[1] COMSOL, Inc. 1100 Glendon Avenue 17th Floor,

Los Angeles, CA, 90024. http://www.comsol.com.

[2] ANSYS, Inc. Southpointe, 275 Technology Drive,

Canonsburg, PA 15317, www.ansys.com

[3] L-Edit- Tanner Research, 825 South Myrtle Avenue,

Monrovia, CA 91016, USA. http://www.tanner.com

[4] Cadence Design Systems, San Jose, California, USA

[5] L. W. Nagel, “SPICE2: A Computer Program to

Simulate Semiconductor Circuits,” ERL Memo. No.

UCB/ERL, Vol. M75/520 (1975)

[6] SIMULINK - Mathworks, Natick, Massachusetts,
U.S.A. http://www.mathworks.com/products/simulink

[7] Coventorware’s Architect and MEMS+ for Systems

Design. http://www.coventor.com/mems-

system/mems-system-design.html

[8] Intellisense’s Synple and EDA Linger for Systems

Design. http://intellisense.com/MEMS-SoC/MEMS-

SoC.html

[9] Jason Vaughn Clark and Kristofer S. J. Pister,

“Modeling, Simulation, and Verification of an

Advanced Micromirror Using SUGAR”, Journal of

Microelectromechanical Systems, Vol. 16, No. 6,
December, 2007, pp.1524-1536.

[10] COMSOL Multiphysics Matlab Interface Guide,

Version 3.5, COMSOL Inc.

[11] J. V. Clark, D. Bindel, W. Kao, E. Zhu, A Kuo, N.

Zhou, J. Nie, J. Demmel, Z. Bai, S. Govindjee, K. S.

J. Pister, M. Gu, A. Agogino, "Addressing the Needs

of Complex MEMS Design," Proceedings IEEE The

Fifteenth Annual International Conference on Micro

Electro Mechanical Systems, Las Vegas, Nevada,

January 20-24, 2002.

[12] P. Marepalli, J.V.Clark, “-A Systems Design

Framework Based in Matlab That Integrates Sugar,
Spice, Simulink, Fea Comsol, and GDS-II Layout”,

International Conference on Modeling and Simulation

of Microsystems, Boston, MA, USA.

[13] Cadence Virtuoso Spectre Circuit Simulator, Cadence

Design Systems, Inc. 2655 Seely Avenue, San Jose,

CA 95134

[14] Ptolemy Project – Heterogeneous Modeling and

Design. http://ptolemy.eecs.berkeley.edu

SIMULINK with a Sugar Block

NSTI-Nanotech 2011, www.nsti.org, ISBN 978-1-4398-7139-3 Vol. 2, 2011 697

