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ABSTRACT

A multi-scale novel homogenization technique is
introduced to model mechanical behavior of open-cell
porous media. The proposed method consists of primarily
four components. The first component is based on two
assumptions. First, a random porous structure can be
approximated by superimposing regular grids that are
interacting with each other at “junction” points. The second
component consists of replacing each grid by an equivalent
continuum. The forces at the junction points are also
replaced by interacting body forces. The third component is
to represent the equivalent media by single medium by
expressing the “average stresses” in the elastic mixture in
terms of the “average displacement™ It is discussed how to
extract the information about the geometrical and
mechanical properties of the grids by comparing the
analytical and experimental data for the dispersion of waves
propagating in porous medium.

Keywords: porous media, equivalent continuum, gradient
elasticity, wave propagation, dispersion

1 INTRODUCTION

Open cell porous media can be found in the nature as
light-weight structural elements. Bones in all mammals are
typical example for such materials. Open cell porous media
are also used as man-made materials for light-weight
structural elements, high specific bending stiffness and
strengths and as thermal insulators. It is an ongoing active
research field to develop methods to predict the mechanical
behavior of open cell porous media.

Open cell porous media can be envisioned as a
collection of randomly interconnected struts. This
collection is often considered that the struts form open
cells. The properties, especially the geometrical (cross-
section and length) properties of struts may exhibit
significant variations from cell to cell,. even within a cell.
Mechanical (Young’s modulus and Poisson ratio) can also
vary within certain limits. The complexity of the structure
of the open cell porous media poses difficulty for modeling
their mechanical behavior. Finite Element Analysis (FEA)
has been proven to be useful [1, 2] to model the mechanical
behavior of open cell porous media. Li et al. [1] studied the
mechanical response of an open cell porous medium with
various cell size and strut cross sectional area. Roberts and

Garboczi [2] modeled the mechanical response of open cell
porous media created using techniques developed in
structural engineering. Although FEM has demonstrated to
be efficient in modeling the mechanical behavior of open
cell porous media, it can be time-consuming and expensive.

Studies on wave propagation phenomena in porous
media have been an attractive research field after WW 11 [3-
5] and it is still an active field. The efforts on the
mechanical behavior of open cell porous media resulted in
successful analytical approaches [Sa,b]. Among others
mixture theory has become an useful analytical tool.
Truesdell and Toupin [6] developed an axiomatic mixture
theory for interacting elastic continua such that each point
of space is simultaneously occupied by all constituents of
the mixture. It has been used with a remarkable success to
model the mechanical behavior of composite materials [7].
In this approaches, it is also assumed that the interactions
between the constituents of a mixture are accounted for as
interaction forces in the appropriate field equations.

The success of the mixture theory is the main motive of
this study which is a need to establish an efficient and
accurate modeling approach to predict the mechanical
response of open-cell porous materials as a function of the
material microstructure. In this study a homogenization
process to model the mechanical behavior of the open cell
porous materials is introduced. The method is introduced in
the next section. The wave propagation in a porous medium
is discussed which is followed by a conclusion.

2 AN HOMOGENIZATION METHOD

The method proposed here is an improved version of
the homogenization technique called “rule of mixture” [8].
Our method differs from the classical “rule of mixtures” on
the following points. The major difference of our multi-
scale homogenization method is that it is based on an
assumption that a open cell porous medium which is
random in geometrical and mechanical properties can be
represented by superimposed regular grids. Also, interaction
between the constituents of the mixture is taken into
account. Second, a multi-scale homogenization process is
applied where each constituent is replaced by an equivalent
continua and the mixture is represented by a single media
employing appropriate “average displacement field” and
“average stress field”. The final outcome of this method is a
constitutive equation of “nonlocal” or “gradient dependent”
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where the constitutive constants are explicitly expressed in
terms of the microstructural parameters of the open cell
porous media. Our early works in this field are reported
somewhere else [9-12].

Our method consists of primarily four steps.

Step 1 is an assumption that an open cell porous media
can be approximated as geometrically and mechanically
close as desired by superimposing regular grids. This
assumption is actually a mathematical conjecture which
needs a rigorous proof. A proof of this conjecture
formulating the problem as a multivariable Fourier series is
under development. In this step, the interaction forces
between the regular grids are also taken into account.
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Step 2 is to replace each regular grid by an equivalent
media. For the fundamentals of such a process one can
consult Gibson and Ashby [5] if the bending and torsion
response of the grids are ignored. Recently, an
homogenization process taking into account the bending
and torsion strength using micropolar elasticity [13] has
also been suggested. In this step, the interaction forces
between the grids are homogenized as body forces
proportional with the difference of the displacements of the
constituents.
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There are several methods developed to determine the
properties of the equivalent media. For example Zhang [14]
reported the following results for a rectilinear grid.

Young’s modulus

1 1 (R—1)(9R®— 119R? + 45R — 15)
E E 80R3

and the Poisson ratio

_ 3 13R®—-13R? - 15R+5
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v

Here,

R a
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where a,! is the side length of the square cross-section and
the length of the struts, respectively. Egis the Young’s
modulus of the strut’s material, and v; = 0.3 is the Poisson
ratio.

Equivalent media constitute na interacting binary
elastic mixture and its elastic behavior can be represented
with the following equations:

o =2a(1 = v)(u} —uf) (D
ot = —2av(ui —uf) )

Step 3 consists of defining appropriate average and
difference displacements and average stresses for the
interacting elastic mixture.

Average Displacement:

w; = vyl + (1 —v)u? 3)
Difference Displacement

v = (Ui —ui)/2 (C))
Average Stress

0;; = vaj; + (1 = v)aj; (5)

The outcome of this step, is relationship for the average
stress in terms of average and difference displacements and
a relationship between the average displacement and the
difference displacements. The rest of this process consists
of eliminating the difference displacement between two
field equations of each medium and expressing the average
stress in terms of the average displacement.

Step 4 is about eliminating the difference displacement
between the difference displacement field and the average
displacement field. The resulting equation is a nonlocal
relationship between the average stress field and the
average displacement field. The difference displacement
satisfies the following partial differential equation.

2( Au =y "
(X;{ ;;fz:,vk_kdij + u (vi,j + Vj,i)}

-(1- ZV)(Vi_]- + Vj,i)’” = (ui.j + ujri),ll ©)
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The average stress can be expressed as follows.

0ij = vi, +(1 - V)/‘{Z]uk,ké‘ij +

[V[_ll + (1 - v),uz](ui_]- + u}"i) +

2v(1 — v){(ll = )V 0ij + (g — Hz)(Vi,j + Vj,i)}
@)

If the difference displacement field is solved from Eq. (6)
using Green formalism and is substituted above, the
resulting constitutive equation is obtained. Please note that
this constitutive relation is of nonlocal form. Although, if it
is assumed that

VZ (Vi']' + vj,i) K (Vi,j + Vj,i) (8)

The resulting constitutive equation becomes
C

0;; = [vAd; + (1 = v)A Juy , 635
vy + (1 =V (ugj + i) +v(1-v) x

1p" (A —2) B +2p") + 2(uy — p) A" — 2"
ey 7 U jerr G
a w'@BAT+2u")
(1—p2) o'
+ —0{ F (uil]- + uj,i),”} (9)

In these expressions, the following terms are used.
A= DAy + 200ty + 22501 + 20540,

V==vi+ (A=, p=mu,

p=—vpg + 1=V,

Please note the final result is a constitutive equation of
gradient depedent type.

3 DISPERSION RELATION

The mechanical and geometrical properties of the grids
used in modelling an open-cell porous media can be
determined by comparing the theoretical and experimental
dispersion relation. This idea is demonstrated below in a
simple manner.

Let usconsider the following displacement field.

u(x,y,z,t) = Aexpli(kx — wt)] (10)
v(x,y,z,t) =0, w(xy,zt)=0

Here, k,ware the wave number and the frequency,
respectively. The corresponding strain and stress are

e(x, t) = Aexpli(kx — wt)] 11

(e t) = A+ 240 [e(r,t) - ¢ 2259 (1)

Here, the material constant C is defined in accordance with
the constitutive equation given by Eq. (9). Substituting this
stress field into the equation of motion, that is
do(xt) _  0%u(xt)
ax at2

13)

yields
k2[1 + C2k?] = C2w? (14)

Here, p is the mass density, and

_ ’ p
CL_ A+2u

is the phase velocity of the longitudinal waves. This
relationship is called the dispersion relation for the
propagation of a longitudinal harmonic wave in an elastic
media where the constitutive relation is defined by Eq. (9).
This dispersion relation is depicted in the figure below.
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Let us assume a set of experimental data of wave
number-frequency is given.

(kI (15)

The material constants (4, i, p, C) can be determined by
using the following scheme. Let us consider the following
sum.

s=yn L JTFCPRE) 16
= 2i=1 {‘U ot i } (16)
The material constants (/1, wp, C) can be determined by

making this sum minimum, which can be attained by
imposing the follwing conditions.
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4 CONCLUSION

An An homogenization process for open cell porous

media is proposed. The resulted constitutive equation is of
nonlocal (or gradient dependent, it if is approximated).
character. It has been also shown that wave propagation in
nonlocal (an in gradient dependent) elasticity is dispersive.
This property can be used to determine the properties of
bones which will be main goal of the forthcoming paper.
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