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ABSTRACT

An orthotropic shell-Stokes flow model has been 
developed to explore the distinctive vibration behaviors of 
microtubules (MTs) in the cytosol of eukaryotic cells. The
slip boundary condition has been considered for the MTs
due to the existence of an ionic slip layer formed on the 
MT-cytosol interface. The dispersion relations have been 
derived and the viscous effect of cytosol has been examined 
quantitatively. The results show that an MT-cytosol system 
only supports the torsional and longitudinal vibrations of 
MTs where negligible or small damping occurs for the 
axisymmetric torsional and long-wavelength longitudinal 
vibrations whereas the non-axisymmetric torsional or 
longitudinal vibration of MTs decays exponentially in 
cytosol.  
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1    INTRODUCTION

Microtubules (MTs) (Fig.1) with hollow cylindrical 
structure are rigid polymers composed of tubulin 
heterodimers. As a principle component of the cytoskeleton 
in eukaryotic cells MTs play an essential role in providing 
mechanical rigidity, maintaining the shape of cells and 
facilitating other physiological processes, e.g., cell division, 
cell motility and intracellular transport [1-6]. 

The fulfillment of the functions of MTs depends 
crucially on their mechanical properties. The mechanics of 
MTs thus become a major topic of numerous recent 
researches [7-11], where the vibration of MTs [12-18] is of 
primary interest. Particularly, since MTs are immersed in 
cytosol the vibration of MTs in a fluid has attracted 
considerable attention in last decade [12, 14-15]. In 
studying the longitudinal vibration Pokorny [14-15] pointed 
out that an ionic charge layer formed around the surfaces of 
MTs minimizes the viscous effect of the cytosol, which 
allows slide between MT and the surrounding fluid. So far, 
the most comprehensive investigation on the relevant issues 
has been carried out by Sirenko et.al [12]. The authors 
showed that an MT-fluid system supports a spectrum of 
non-radiative vibrations including three axisymmetric 

acoustic modes, and an infinite set of non-axisymmetric 
modes obeying a parabolic dispersion law. In this study, an 
isotropic shell model is used for MTs, where the bending 
stiffness of MTs is implicitly ignored [18] and the cytosol 
around MTs is tacitly assumed to be an ideal fluid and the 
viscous force of cytosol is completely neglected [19]. Such 
an isotropic shell model is oversimplified for highly 
anisotropic MTs with significant bending resistance [20]. In 
addition, the viscous force of cytosol could be predominant 
over the inertial force and thus, should be taken into 
consideration in the vibration analysis. Form these 
discussions it follows that to give a reliable description of 
the MT vibration in cytosol it is imperative to develop a 
more realistic model for an MT-cytosol system and 
reexamine the issues by using the new model that reflects 
the unique features of such a solid -fluid system.  

2    SHELL-STOKES FLOW MODEL

In this study we consider an MT submerged in cytosol 
as shown in Fig 1. 

Fig. 1 A schematic picture of an MT immerged in cytosol.

It is noted in Refs. 21 and 22 MTs can be modeled as 
orthotropic shells, whose dynamic equations are shown in 
[21].  The dimensional analysis shows that the motion of a 
fluid induced by the vibration of nanoscale tubules is 
characterized by a low Reynolds number much smaller than 
unit. The flow of cytosol fluid thus can be modeled as 
Stokes flow whose governing equation is 

0 fv and
fff vp 2                                             (1)
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where 
fv denotes the velocity, 

fp the pressure and 
f the 

dynamical viscosity of cytosol. The solutions of equation 
(1) consisting of three potential functions that satisfy the 
Laplace’s equation can be found in Ref. 19. The continuity 
condition requires that cytosol moves with the same radial 
velocity with MTs at the boundary r = R (radius of the MT). 
In addition, due to the existence of the slip layer on the 
surface of MTs [14-15] (Fig.1) the free slip boundary 
condition is enforced at the MT-cytosol interface, i.e., the 
friction between MTs and cytosol is assumed to be zero. 
Furthermore, such a slip layer is so thin that its momentum 
and angular momentum of inertial can be safely neglected. 
As a result the tangential velocities of cytosol should vanish 
at the boundary r = R. In view of these analyses the 
boundary conditions of cytosol at r = R are as follows

0)( xfv ,  0)( fv and  
t

w
v rf 


)(                          (2)                          

where x and  are axial and angular circumferential 
coordinates. t is time and w is the radial displacement of the 
MT. Substituting the suitable form of displacement 
functions of MTs into their vibration equations (Ref. 21) 
and the above obtained solution to equation (1) with proper 
form of the potential functions (Ref.19) into equation (2)
leads to the following algebraic equations: 
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where n and k are circumferential wave number and wave 

vector in axial direction,   is frequency quantity and (U, 

V, W) are vibration amplitudes in axial, circumferential and 

radial directions, respectively.  The existence condition of a 

nonzero solution of (U, V, W) is:

0),,(det 33  knH                                                        (4) 

Solving equation (4) one can obtain  as a function of n
and k for a coupled MT-cytosol system. Subsequently, 
substituting the value of  into equation (3) yields the 

amplitude ratio (
W

U , 
W

V , 1) which defines the vibration 

modes associated with the specific frequency quantity  . 

3 Results and discussions
Following the way shown above we shall explore the 

vibration behavior of MTs in cytosol. Since cytosol has 
about 70% (weight) of water a coupled MT-water system 
will be considered as a typical example. The values of 
material constants used in the present analysis are

3/47.1 cmg , 3.0x , GPaEx 1 and 310 

[18,21-23] for MTs, and 3/1 cmgf  and 
23 /10002.1 msNf   for water.

3.1 Axisymmetric vibration 

In this section we study the axisymmetric vibration of 
MTs where the circumferential wave number 0n . The 
phonon-dispersion curves are shown in Fig.2 for an MT in 
cytosol and compared with those of free MTs. 

Fig. 2 The phonon dispersion curves of axisymmetric 
modes of free MTs (dotted lines) and MTs immersed in 
cytosol (solid lines).

Fig.2 shows that, in the absence of cytosol MTs show 
longitudinal (L) and torsional (T) modes characterized by a 
linear dispersion law and a radial (R) mode with nonzero 
asymptotic frequency at k = 0. An MT-cytosol system 
however only supports two acoustic modes, i.e., L and T
modes, whose phonon-dispersion curves coincide with their 
counterparts of free MTs. In contrast, the R mode vanishes 
due to the viscous damping of cytosol. Three dispersion 
relations for axisymmetric modes can be derived based on 
Eq. 4 with 0n . The first is the linear one for 
axisymmetric torsional vibration as shown in Fig.2, 

k032.0                                            (2)

Such a torsional mode is decoupled with axial and radial 
displacements and thus, will not be affected by surrounding 
cytosol flow when the friction between MTs and cytosol is 
neglected in the presence of the slip layer. The second 
linear dispersion relation obtained at 1.0 and 1.0k is

k                                                                                (3)

which corresponds to the L mode of MTs in Fig.2. In the 
limit of small k, i.e., large axial wavelength  ( kR /2 ), 
MTs originally modeled as thin shells behave like elastic 
columns where the longitudinal deformation is almost 
decoupled with the radial one. In this special case, the effect 
of cytosol on the L mode is negligibly small. In general case
however L mode is coupled with radial displacement due to 
the effect of Poisson ratio and bending stiffness. Thus, L 
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mode is generally damped by cytosol via the MT-cytosol 
interaction in radial direction. The vibration amplitude of 
the axial mode is obtained as 

t
R

DS

eAA


 0                                                                     (4)

Here A0  and  D are positive real numbers and S is the 
propagation speed of the wave. Eq. 4 shows that the L mode 
generally decays exponentially with time. The relaxation 
time, i.e., the time for the vibration amplitude to reduce to
the tenth of its initial value is calculated in Table 1 for the L
mode of different k .  

k 10-4 10-3 10-2 10-1 1

 (s) 3×105 304 30.4 0.3 3.2×10-6

fT/
3×1011 4×109 4×108 3.8×107 4.2×106

Table 1 The relaxation time  (s) and the relaxation time 
(  )-to-vibration period (

fT ) ratio calculated for the 
axisymmetric L mode of MTs in cytosol.

In addition, for R mode the following relation can be 
derived based on Eq. 4 with n = 0 and k << 1.  

2
42 

 nknk MM                                                     (5)

where Mnk is usually an negative imaginary number. This 
gives two negative imaginary numbers. Our numerical 
results indicate that such negative imaginary solutions 
actually can be obtained for the axisymmetric R mode 
throughout the full length of k considered here. Therefore, 
as shown in Fig.2, the R mode of MTs evaporates in an 
MT-cytosol system. On the other hand, in the absence of 
cytosol Mnk = 0. The above equation then reduces to 

 at small k, which is the dispersion relation for the 
axisymmetric R vibration of free MTs shown in Fig. 2 (the 
dotted line). 

3.2 Non-axisymmetric vibration 

In this section let us study the non-axisymmetric 
vibration of MTs in cytosol, which is characterized by 1n .
It is noted that in non-axisymmetric case coupling always 
occurs among the displacements of MTs in longitudinal, 
circumferential and radial directions. Although longitudinal 
or circumferential displacement could be orders of 
magnitude larger than the radial one the latter never 
vanishes during the vibration. Naturally, the energy 
dissipation of the vibrations will take place as a result of the 
MT-cytosol interaction in radial direction and the strong 
viscous force in cytosol. Thus, the solution of Eq. 4 with 

1n is always given in the form of A - Di, where A gives 
the frequency quantity RA/S and D (D > 0) measures 
vibration damping. The phonon-dispersion relations of the 

non-axisymmetric vibrations of an MT-cytosol system have 
been derived and the dispersion curves with n = 1, 3 and 5 
are shown (solid lines) in Fig. 3 in comparison with those 
obtained for free MTs (dotted lines).

Analogous to the axisymmetric case, for each 
combination of ( n , k ) three non-axisymmetrical vibration 
modes are shown in Fig. 3 for free MTs. For n = 1 and k <1
the lowest frequency (Fig.3a) corresponds to the beam-like 
bending (B) mode where MTs deform in transverse 
direction with rigid body motion of their circular cross-
sections. For n > 2 and k < 1 the lowest frequency (Fig.3b 
and c) corresponds to the circumferential (C) modes where 
predominant local bending of MT wall distorts their cross-
sections [18]. These vibration modes exhibit a radial 
displacement which is comparable to the circumferential 
displacement but much larger than the longitudinal one. 
Thus, as shown in Fig. 3 they have been eliminated in an 
MT-cytosol system owing to the strong damping effect of 
cytosol. For similar reasons, 'C (circumferential) mode at 

2k and R mode at 2k associated with the 
intermediate frequency of free MTs also disappear in an 
MT-cytosol system (Fig.3). In fact, due to the presence of 
cytosol these modes become over damped non-oscillation 
motions whose displacements decay exponentially with 
time. In particular, such exponential decaying of transverse 
motion predicated based on the present model has already 
been observed for MTs in a fluid in experiment [10]. 

(a)                       (b)                         (c)
Fig. 3 The phonon dispersion curves of non-axisymmetric 
modes of free MTs (dotted lines) and MTs immersed in 
cytosol (solid lines) with (a ) n = 1, (b) n = 3  and (c) n =5. 

It is noted in Fig.3 that the vibration supported by an 
MT-cytosol system is limited to L and T modes where 
longitudinal and circumferential displacements are at least 
two orders of magnitude greater than the radial one. 
Specifically, as far as the T mode at 2k and L mode are 
concerned no visible discrepancy can be found in Fig. 3 
between free MTs and those immersed in cytosol. As 
mentioned before, similar phenomenon has been observed 
in Fig.2 for axisymmetric T and L modes. It follows that 
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cytosol cannot significantly alter the L and T mode 
frequency of MTs. Thus the most prominent influence of 
cytosol on the MT vibration is to demolish their amplitudes. 
More detailed study show that the relaxation time of the L 
mode is of the order of 10-6 to 10-4s and that of the T mode 
varies from the order of 10-8to 10-6s, which is extremely 
short. However this relaxation time is still four to six orders 
of magnitude greater than the period of the L mode and one 
to three orders of magnitude larger than that of  T mode.  

4 CONCLUSIONS

Based on a orthotropic shell-Stokes flow model the 
vibration of MTs immerged in cytosol has been studied. 
The friction on the surface of MTs is neglected due to the 
existence of a slip layer at the MT-cytosol interface. The 
coupling between the MT vibration and the flow of cytosol 
is achieved merely via their motions in radial direction. It is 
found that

In axisymmetric case ( 0n ), torsional and 
longitudinal vibration are two acoustic modes obeying a 
linear dispersion law. The torsional mode is decoupled with 
radial displacement and thus free from the damping effect. 
For the longitudinal modes with large wavelength,  the MT-
cytosol coupling is very small giving the relaxation time 
greater than 5103 s (3.5 days) and the relaxation time-to-
period ratio of the order of 1110 .     

Non-axisymmetric ( 1n ) torsional and longitudinal 
vibrations are strongly coupled with the motion of cytosol 
via a small but none zero radial displacement. Thus these 
vibrations will decay exponentially with time. The 
relaxation time however is still up to six orders of 
magnitude greater than the corresponding vibration period. 
This indicates that the excitation of non-axisymmetric 
torsional and longitudinal vibrations may have significant 
impact on the mechanical integrity and normal functioning 
of MTs.    
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