Development of Visible-Light Active TiO₂ and Activated Carbon Fiber Composites in Single Step C.-Y. Tsai*, H.-C. Hsi** and K.-S. Fan*** ***Department of Safety, Health and Environment Engineering, National Kaohsiung First University of Science and Technology, 2, Juoyue Rd., Kaohsiung 811, Taiwan, u9315918@ccms.nkfust.edu.tw **Institute of Environmental Engineering and Management, National Taipei University of Technology, 1, Sec. 3, Chung-hsiao E. Rd., Taipei 106, Taiwan, hchsi@ntut.edu.tw ***Department of Safety, Health and Environment Engineering, National Kaohsiung First University of ***Department of Safety, Health and Environment Engineering, National Kaohsiung First University of Science and Technology, 2, Juoyue Rd., Kaohsiung 811, Taiwan, ksfan@ccms.nkfust.edu.tw ## **ABSTRACT** The aim of this study is to develop visible-light photocatalyst nanopowders by N₂ modified TiO₂ matrix via gas-phase evaporation condensation. The formed visiblelight TiO₂ nanopowders are subsequently doped onto the surface of activated carbon fiber (ACF). This TiO₂/ACF composite possesses the capability of adsorption, concentration, and photodestruction of gaseous contaminants. The formed TiO₂ nanopowders and TiO₂/ACF composites were characterized with TEM, XRD, UV-Vis and ESEM. The obtained results indicated that the nanopowders had a size within 10 - 40 nm. The formed TiO₂ nanopowders were a mixture of anatase and rutile. The TiO₂ with N₂ modified has an evident red-shift in wavelength absorption. ESEM results also showed that the synthesized TiO₂ nanopowders were uniformly distributed on the ACF surface. These results revealed that the proposed thermal plasma condensation method successfully fabricated visible-light TiO₂ /ACF in a single step. Keywords: N_2 modified TiO_2 , activated carbon fiber, evaporation condensation, thermal plasma #### 1 INTRODUCTION Titanium dioxide (TiO₂) is a commonly used photocatalyst due to its chemical stability. Nevertheless, the manufacturing process of TiO2 strongly influences the purity and physical properties of resulting nanoparticles. These properties subsequently affect the characteristics of TiO₂ photocatalytic reactions. One crucial defect of TiO₂ is that its band gap energy of 3.2 eV to make the TiO₂ only being excited by UV light. Therefore, significant changes have been studied to modify TiO2. A proficient way is to extend the absorbance of TiO₂ to visible light. Recently, many literatures have described that substitution doping with nitrogen atom in TiO₂ lattice shifts the absorption edge to lower energies through band gap narrowing, because the related impurity states are supposed to be close to the valence band maximum [1-3]. Asahi et al. produced theoretical compute for substitution of O₂ in TiO₂ lattice with several anionic materials and showed that the substitute doping of N is the most efficient way for getting the visible light activity of TiO₂ photocatalysis [1]. On the other hand, Yamada et al. synthesized visible-light active TiO₂ particles of which the surface was doped with nitrogen. They sintered a film of the particles on the surface of a glass substrate by spin-casting of TiO₂ sol. Then the film was treated with argon and nitrogen plasma [3]. However, the effectiveness of TiO2 photocatalyst on destructing contaminants has shown to be largely influenced by the types and concentration of pollutants. The concentration of organic pollutants around TiO₂ has a great effect on decomposition rate. To achieve the goal of completely decomposing targeting pollutants, it is important to increase the interface concentrations of the contaminants for the photocatalytic reactions. Moreover, mineralization of organic pollutants is a result of continuous photocatalysis process, and many intermediate species with higher toxicity are formed during organic pollutant decomposition. Therefore, composites with titanium dioxide as photocatalyst and with large surface would be of great significance. Usually the pollutants concentrated on the support materials migrate to the surface of TiO₂ by diffusion and then get decomposed. But the degradation efficiency of pollutant decreases because of the mass transfer limitation [4]. To ensure an efficient reaction and maximum activity in heterogeneous catalysis, the active phase on the catalyst surface must be highly dispersed over a large specific surface area. To achieve this objective, TiO₂ photocatalyst active species are usually deposited on the surface of highly porous support substrates, such as activated carbon fibers [5-7]. Much recent work was focused on the preparation as well as on the TiO₂/ACF composites. Herbig et al. produced carbon fibers with TiO₂ by liquid phase deposition (LPD). Comparative measurements suggest that the surface specific photocatalytic activity of LPD-derived TiO₂ is higher than that of commercially available P-25 [5]. Liu et al. prepared TiO₂/ACF by sol-gel method. [6]. Zhang et al. prepared Fe₂O₃-TiO₂ coating supported on ACF by a convenient and efficient methodof metal organic chemical vapor deposition. The pore structure of ACF was preserved well after loading with Fe₂O₃-TiO₂ coatings, and exhibited good photocatalytic activities for the degradation of methyl orange under visible light irradiation [7]. However, so far only a few reports studied preparation methods for TiO_2/ACF composites. Synthetic routes for TiO_2/ACF are usually based on sol-gel method, thus a multi-step synthetic process was needed. Few studies have shown to produce TiO_2/ACF in single step. This study aimed at preparing visible-light TiO_2 nanopowders by nitrogen modified. And let the TiO_2 impacted the ACF at the same time. We considered this single-step process as a potential method to produce high-quality nanoscale visible-light TiO_2/ACF with clean surface and narrow particle size distribution. ## 2 EXPERIMENTAL Visible-light TiO₂/ACF composites were synthesized with evaporation condensation method as shown in Fig. 1. Transferred DC plasma torch assembled by Taiwan Plasma Corp. (Kaohsiung, Taiwan) was used as a heating source. The torch electrode that manufactured with copper alloy was cooled by water. Titanium metal of 99.8% purity was used as the evaporation material. Desired power level was maintained by controlling the flow rate of the plasma gases and plasma current. A mixture of nitrogen, argon and helium were used as plasma gas. The flow rate of Ar + He was constant at 2 L min⁻¹ varying the concentration of N₂ to control the ration $N_2/(Ar + He)$ from 0, 5, 7 and 10% by volume. The reactor base pressure was 20 kPa. O2 was used both as a reacting gas and as shelter gas of plasma torch (2) L min⁻¹). The operating current of 110A was considered optimum. The distance between the torch and ACF was 150 mm and the angle of both was 180°. A vacuum pump was connected at the back of reactor which compelled the TiO₂ impact on the ACF. Figure 1: Schematic diagram of transferred DC plasma torch for producing visible-light TiO₂ /ACF composites. Morphologies and particle sizes of the powders were investigated by transmission electron microscopy (TEM, PHILIPS model CM-200 TWIN). The crystal structure of TiO_2 was evaluated by X-ray diffraction (XRD, SHIMADZU model XRD-600). The diffuse reflectance UV-visible spectra of the TiO_2 photocatalysts were measured using a spectrophotometer (UV-Visible, HITACHI model U3010). The images of TiO₂/ACF and uncovered ACF were observed by environmental scanning electron microscope (ESEM, FEI Quanta model 400 F). #### 3 RESULTS AND DISCUSSION ## 3.1 Structural of N₂ Modified TiO₂ The morphology of the nanoparticles was observed with TEM as shown in Fig. 2. The darker areas in the TEM micrographs indicate TiO₂ gathers. In situ nanoparticles in Fig. 2a was well distributed with a diameter of approximately 10 nm. The particle size of each sample was approximately the same. The nano sized particles can be either round or spherical shaped, forming from direct titanium vapors or high agglomeration of primary TiO₂ nanoparticles. When the N₂ was added, it had a little effect on the shape and size of the particles. The average diameter of the nanoparticle increased from 10 to 40 nm when N₂ was added to plasma gas. In contrast, TiO2 particles in the sample prepared by a 0% N₂ process were smaller and more dispersed than that prepared by a N₂ added process. The aforementioned observations were somewhat expected because the flame temperature of transferred plasma torch was markedly influenced by the types of plasma gases and the magnitudes of applied plasma power. When the N₂ was added to plasma gas, the voltage of plasma was observed to increase from 20.7 to 23.68. The titanium metal, playing a role as the anode in this study, vaporized faster at a higher flame temperature, which caused a quicker and more effective collision between vaporized Ti atoms and oxygen to form TiO₂. As a result, a rapid nucleus growth occurred, which greatly increased the size of the formed nanoparticles. Ramasamy and Selvarajan have reported the increase in the temperature of plasma jet and growth in powder size when N₂ was added. [8]. These results indicated that evaporation condensation process could result in TiO2 with a more perfect nanoparticle size. Fig. 3 shows the XRD patterns of the powders as a function of nitrogen concentration ration in nitrogen/(argon + helium) gas mixture. The TiO₂ nanoparticles exhibit wellcrystallized anatase phase with (101) preferred orientation and weak bands for rutile phase in the XRD patterns. As shown in Fig 3a, the peaks at 25.3, 37.8, 48.0, 53.8, 54.9 and 62.5° are the diffractions of the (101), (004), (200), (105), (211) and (204) planes of anatase, respectively. Although the peak (2 theta = 27.45°) of rutile TiO₂ (110) was also observed in the pattern of Fig 3a, it was weak enough to be ignored here. The patterns of the Fig 3b, 3c and 3d particles became broader gradually in the (004) and (200) of anatase as the nitrogen concentration was increased gradually. While nitrogen (5% and 7%) added to plasma gas, the peak of rutile (110) was complete and also observed that anatase transform rutile from peaks at 53.8 and 54.9°. The anatase of TiO₂ transforms into rutile by increase in temperature. Accompanying with the results obtained from the TEM analyses, it appeared that the nitrogen increased plasma temperature in the formed TiO₂ may promote particles growth. The compounds of Cu were observed to melt from the plasma torch and mixed with the TiO₂ nanopowders when 10% N₂ was added to the plasma gas. In contrast, the pattern of powder as in Fig. 3d was much different in peak broadening and relative peak intensities compared with Fig. 3b, and an additional peak of 2 theta = 36.0°. From the JCPDS database, the d-specing of rutile (101) and Cu₂O (111) is 2.49 and 2.47, respectively. Therefore, the peak primary Cu₂O phase with a minor amount of rutile phase was maintained. The formation of compounds of Cu phase could be explained by the fact that at high plasma temperature, certain percentage of the Cu compounds were present from the plasma torch. Wong et al. indicated that the excess N2 fraction created TiN, which increased the nitrogen incorporation and destroyed the anatase TiO₂ phase in the TiO_xN_y nanoparticles [9]. XRD results in our study show that the nitrogen supply would influence the composition and crystallinity of the TiO2 powders. In this study, the nitrogen addition amount is not enough to create TiN. The data in figure 4 correspond to UV-visible spectra of the nanoparticles synthesized N₂ modified TiO₂ at various nitrogen concentrations and commercial Degussa P-25 TiO₂ over the wavelength range of 300 - 800 nm. In contrast, the nanoparticles of TiO2 without N2 supply showed the absorption edge at 390 nm corresponding to the band gap of TiO2 at 3.18 eV. This result is similar to commercial Degussa P-25 TiO2. In contrast, the N2 modified TiO₂ powders showed a strong absorption in the visible range. For the 0%, 5% and 7% nitrogen modified TiO₂ nanoparticles, the absorption edge shifts towards the visible light regions depending on the amount of nitrogen concentration ration in the plasma gas mixture. Significant red shift of the absorption edges to the visible-light region was observed in the 7% N2 added to plasma gas. As the N2 concentration was 7%, the absorption edges of the TiO2 nanoparticles showed red shift at around 490 and 590 nm. We attributed this new absorption band to N atoms modified TiO₂ nanoparticles. This conclusion was based on the following reasons. By comparing the spectra of N₂ modified TiO₂ sample with non-N₂ modified TiO₂, we can conclude that N modification led to the appearance of visible adsorption of TiO2. The reflection spectrum of modified sample with N₂ shifted to shorter wavelength than that of commercial anatase TiO₂ probably because of a size quantization effect. However, the TEM results can manifest the particle size of N₂ modified TiO₂ larger than non-N₂ TiO₂. The spectrum of 10% N₂ modified TiO₂ was good agreement with the produced new band at around 425 nm. Although, the band gap of 10% N₂ modified TiO₂ at 2.91 was lower than non-N2 TiO2 band gap at 3.18 eV. Nonetheless, the absorption edges of 10% N₂ modified TiO₂ had still smaller contrast with 7% N₂ modified TiO₂. XRD results showed presence of the compounds of Cu in TiO₂ powders, hence reduced absorption edges. The foregoing results indicated that 7% N₂ modified TiO_2 nanoparticles belonged to anatase and rutile mixed TiO_2 and had the absorption edge in visible-light. Figure 2: TEM images of TiO_2 nanoparticles synthesized with N_2 added different volume (a)0%, (b)5%, (c)7% and (d)10% to plasma gas. Figure 3: Comparison of the XRD patterns of (a) 0% nitrogen modified TiO₂ nanoparticles, (b) 5%, (c) 7% and (d) 10% nitrogen modified TiO₂ nanoparticles. ## 3.2 TiO₂/ACF Composites Characterization Fig. 5 shows the surface morphology of pristine ACF and 7% N₂ modified TiO₂/ACF composites measured by ESEM. Fig 5a shows ESEM analysis of surfaces of pristine ACF. The surface of pristine ACF is full of long shallow grooves. The TiO₂ nanoparticles appeared even and uniform on almost every fiber of ACF as shown in Fig. 5b. From the ESEM photographs, it could be seen that the surface of ACF was not completely covered with the TiO₂ coating. The TiO_2/ACF system retained the same tridimensional shape and almost the same diameter as uncovered ACF. It was deduced the deposited TiO_2 nanoparticles on ACF would have close unprocessed, which was favorable for adsorption and photocatalysis of pollutants. Figure 4: UV-Visible absorption spectra of the P-25, non- N_2 and different concentration N_2 modified TiO₂. Figure 5: The ESEM surface analysis of samples (a) The blank ACF and (b) TiO₂/ACF composites. ### 4 CONCLUSION There are two major difficulties in the TiO_2 gas-solid photocatalytic system: effective immobilization of the TiO_2 particles; and improving the catalytic activity under visible light. To simultaneously solve these two problems, N_2 modified TiO_2 coatings supported on activated carbon fiber, have been prepared in one step by evaporation condensation using a thermal plasma system. Results indicated that the nanoparticles had a size within 10 nm in non-nitrogen environment. The nitrogen added to plasma gas increased the particle size to 10-40 nm. The crystal phases of the N_2 modified TiO_2 nanoparticles were mainly in anatase and rutile forms. The TiO_2 nanoparticles exhibit well-crystallized anatase phase and weak band for rutile phase in non-nitrogen plasma gas. The substitution of nitrogen was found to cause a significant red shift in the absorption edge to lower energy due to band gap narrowing. The micropore structure and high specific surface area of ACF were not damaged by deposition of N_2 modified TiO_2 . The pore structure of ACF was preserved well after loading with visible-light TiO_2 nanoparticles coatings, so the adsorption ability of ACF was expected to be maintained. These results demonstrated that the proposed thermal plasma method evaporation condensation successfully fabricated visible-light TiO_2 /ACF composites in a single step. #### **ACKNOWLEDGMENT** This work was supported by National Council of Taiwan (NSC 97-2622-E-327-001-CC3) and Taiwan Plasma Corp., Kaohsiung, Taiwan. #### REFERENCES - [1] R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, and Y. Taga, "Visible-light photocatalysis in nitrogen-doped titanium oxides," Science, 293, 269-271, 2001. - [2] Y. Suda, H. Kawasaki, T. Ueda, and T. Ohshima, "Preparation of high quality nitrogen doped TiO₂ thin film as a photocatalyst using a pulsed laser deposition method," Thin Solid Films, 453-454, 162-166, 2004. - [3] K. Yamada, H. Nakamura, S. Matsushima, H. Yamane, T. Haishi, K. Ohira, and K. Kumada, "Preparation of N-doped TiO₂ particles by plasma surface modification," Comptes rendus Chimie, 9, 788-793, 2006. - [4] X. W. Zhang, M. H. Zhou, and L. Lei, "Preparation of photocatalytic TiO₂ coatings of nanosized particles on activated carbon by AP-MOCVD," Carbon, 43, 1700-1708, 2005. - [5] B. Herbig and P. Lobmann, "TiO₂ photocatalysts deposited on fiber substrates by liquid phase deposition," Journal of Photochemistry and Photobiology a-Chemistry, 163, 359-365, 2004. - [6] H. H. Liu, R. Yang, and S. M. Li, "Preparation and application of efficient TiO₂/ACFs photocatalyst," Journal of Environmental Sciences-China, 18, 979-982, 2006. - [7] X. W. Zhang and L. C. Lei, "Preparation of photocatalytic Fe₂O₃-TiO₂ coatings in one step by metal organic chemical vapor deposition," Applied Surface Science, 254, 2406-2412, 2008. - [8] R. Ramasamy and V. Selvarajan, "Heat transfer to a single particle injected into a thermal plasma," Computational Materials Science, 15, 265-274, 1999. - [9] M.-S. Wong, H. Pang Chou, and T.-S. Yang, "Reactively sputtered N-doped titanium oxide films as visible-light photocatalyst," Thin Solid Films, 494, 244-249, 2006.