Guidelines for Verilog-A Compact Model Coding

Gilles Depeyrot, Frédéric Poullet, Benoit Dumas
DOLPHIN Integration 39, Av du Granier BP 65 F-38242 MEYLAN France

ABSTRACT

Verilog-A has practically become the standard for
developing and coding compact device models. However,
contrarily to the Verilog standard, where the IEEE has
defined syntax and semantic rules for both simulation and
synthesis, the Verilog-AMS hardware description language
includes extensions dedicated to compact modeling, as a
superset, but does not define a subset reserved for compact
modeling. This lack of specification, combined with some
SPICE related specificities, are both responsible for the
speed and memory consumption differences measured
between Verilog-A compact models running in Verilog-A
simulators and the same Verilog-A compact models
running in SPICE simulators after conversion into compiled
SPICE models. That is the reason why, after presenting
these differences, this paper presents recommendations for
developers of Verilog-A compact models who want to
optimize their models for SPICE-like simulators and to
facilitate the integration of said models into different
simulators.

Keywords: compact model, Verilog-A, guidelines

1 INTRODUCTION

Circuit design, in any semiconductor manufacturing
process, is based on an accurate description of the electrical
behavior of devices - transistors, diodes, resistors - in so-
called "Spice models", also known as Compact Models.
These models are used by analog circuit simulators, such as
SPICE, to predict the electrical behavior of the circuit.
Accuracy and performance of these models determines, to a
large extent, the validity of simulations results with respect
to measurements on silicon.

As semiconductor manufacturing processes move to
smaller geometries, new physical effects impact the
electrical behavior of devices. These effects must be
modeled and require that additional equations be integrated
into the compact models, which must then become
available in analog simulators.

Usually, such modifications in compact models must be
performed directly in the simulator source code (generally
based on the C programming language) by each EDA
vendor or through a proprietary application programming
interface (API) of the simulator by the model developers.
This cumbersome process is a barrier to the adoption of
new compact models as it is both time consuming and very
inefficient. Indeed, coding the model behavior into a low
level language like C, or worse FORTRAN, implies
calculating and coding the partial derivatives of currents

NSTI-Nanotech 2010, www.nsti.org, ISBN 978-1-4398-3402-2 Vol. 2, 2010

and charges. And these derivatives are difficult to validate.
As a result, the majority of hand-coded compact models
take months to develop and contain derivation errors which
impact the accuracy of the simulation (mainly in small
signal and in noise) and drastically impact the simulation
time. Another drawback is that this approach is absolutely
not portable; the code developed for one simulator cannot
be wused in another simulator without extensive
customizations.

Over the last few years, the Verilog-AMS hardware
description language [1], and specifically its analog-only
subset, called Verilog-A, has been adopted by leading
compact model developers, following the strategy
judiciously promoted both by the GSA Modeling Working
Group (MOS-AK and GSA Modeling) workgroup [2] and
the Compact Model Council [3]. At the same time, the
Verilog-A language was supported by most analog circuit
simulators on the market. Despite Verilog-A language
enhancements to provide better support for compact
modeling [4], a performance gap exists between “direct”
Verilog-A simulations and their SPICE simulations
counterparts using models converted from Verilog-A to C
by the means of a compact model compiler such as ADMS-
XML [5][6][7]. The main explanation for this performance
gap is that compact models only need a subset of Verilog-
A; subset on which additional optimizations can and must
be applied.

This paper [8] is specifically intended for compact
model developers who describe their models in Verilog-A,
and want to optimize their models for SPICE like
simulators. Section 2 reports the results of the comparison
between Verilog-A compact models running in Verilog-A
simulators and the same Verilog-A compact models
running in SPICE simulators after conversion of the
Verilog-A models into SPICE models. Section 2 also gives
some hypotheses to explain the observed differences, while
section 3 gives recommendations for writing efficient
compact models for SPICE simulators.

2 TEST RESULTS

Verilog-A has the potential to change the paradigm for
compact model integration into SPICE like simulators [9].
In spite of performance improvements over the last years,
Verilog-A simulators still remain far away from SPICE
simulators in terms of memory consumption as well as in
terms of simulation speed.

821

822

2.1 Test Bench description

The goal of the testbench is to test the model
implementation, not the simulator engine solver. It must
test the impact of the model implementation on the memory
consumption and on the speed of transient simulation. For
that, we force the number of iterations to be around 25505,
we force the integration method to be trapezoidal, and we
use the same tolerance (when possible). Thus, the solver
has a constant impact on transient simulation speed.

The testbench is composed of an inverter chain: each
inverter is loaded with the next inverter and a capacitor
(always simulated in SPICE). We use three configurations
to test the impact of circuit size on memory consumption
and speed: 200 inverters, 2,000 inverters and 20,000
inverters.

We use only two models with default values for the
parameters, one for the NMOS and another for the PMOS.
The number of models is therefore far less than the number
of MOS instances, just like in a typical SPICE simulation.

This testbench was applied on two SPICE/Verilog-A
simulators, SMASH 5.15 our mixed simulator and
Simulator B, one of our well known competitors.

This testbench was applied using the PSP model and the
EKV3 model.

This testbench was run under the same OS (Windows
XP 32bits) and on the same PC.

To compute the ratio between Verilog-A simulations
and SPICE simulations, we take the best performances of
each simulator to be less sensitive to their respective
implementation.

2.2 Memory consumption results

Table 1 shows the testbench results in terms of memory
consumption. It must be noted that the EKV3 model is not
yet available as a SPICE model in Simulator B.

SMASH 5.15 Simulator B Ratio
Memory usage . . Verilog-
(Mb) SPICE Ver/‘:"g' SPICE Ver}:"g' A/
SPICE

Circuit#1 | 40Mb | 51Mb | 15SMb | 18Mb | 1.20
Jffel Circuit#2| 57Mb | 115Mb | 47Mb | 97Mb | 2.06
Circuit #3 | 216Mb | 633Mb | 330Mb | 854Mb | 2.93

Circuit#1| 3O0Mb | 5IMb | NA | 18Mb | 0.46
ooy [Circuit#2| 51Mb [116Mb| NA | 66Mb | 1.29
Circuit#3 | 170Mb | S07Mb| NA |540Mb| 3.18

Table 1: Memory consumption results

As SMASH runs with a graphic user interface, it
consumes around 34Mb before loading the benchmark.
Therefore, if we take this into account, the ratio increases
and becomes (2.8; 3.5; 3.3) for the PSP model and (3.4; 3.9;
4.0) for the EKV3 model.

After analysis, SPICE consumes less memory for three
main raisons:

a) When converted into SPICE, the Verilog-A module is
split into three structures: the instance (instantiated for each
instance); the instance size (instantiated only once for all
instances with the same size), and the model (instantiated
only once for all instances that use the same model)

b) The variables of the module are not allocated in
memory (heap), but are allocated as local variables in the
stack when the instance is evaluated. Theoretically, this
optimization is possible in Verilog-A, except for output
variables which can be probed with system function
$simprobe, as well as for variables which are used before
they are assigned (hidden states).

c¢) Internal “extra” nodes are instantiated in Verilog-A
and not in SPICE.

The model/instance differentiation constitutes the main
part of the memory differences. The study of the memory
consumption of the SPICE models is given in table 2. The
instance part consumes around 40 % of the memory. When
the number of instances is far greater than the number of
models, this memory consumption decomposition can
explain a ratio up to 2.5 between Verilog-A and SPICE.

PSP EKV3

Instance 40% 39%
Instance size 11% 7%
Model 39% 46%
Variable 10% 8%

Module 100% 100%

Table 2: Memory decomposition of the SPICE models

2.3 CPU time results

Tables 3 show the testbench results in terms of CPU
time for the transient analysis. Again the ratio is very
favorable to the SPICE simulations even for small
simulations.

SMASH 5.15 Simulator B Ratio
Simulation time Veril Veril Verilog-
(seconds) SPICE ergog- SPICE ergog- A/
SPICE

psp Circuit#1 | 1.10s | 17.7s | 2.61s | 30.1s 16.1
Model | Circuit#2 | 17.2s | 249.7s | 29.95s | 416.9s | 14.5
Circuit#3 | 207s | 3384s | 284.6s | 8 822s | 16.4

EKV3 Circuit#1 | 2.43s | 39.7s NA 31.8s 13.1
Model | Circuit#2 | 31.3s 5949s| NA |[351.8| 11.2

Circuit#3 | 373s |Too Big| NA [10197s| 27.4

Table 3: CPU transient time results

The execution speed differences during transient
analysis are mainly due to:

a) Derivation/integration which requires one additional
node. The frequent case in compact models is the case of

NSTI-Nanotech 2010, www.nsti.org, ISBN 978-1-4398-3402-2 Vol. 2, 2010

charge derivatives which can be optimized without adding
an extra node.

b) Bypass/linearization, where, in SPICE for small
variations, the compact model is replaced by a linear model
which is far faster.

c) At each iteration of the transient analysis, the
Verilog-A simulator executes the code corresponding to the
model/instance initialization or temperature adaptation,
while the SPICE simulator does not.

d) Hidden states for variables that depend on the
previous point and output variables. At each iteration of the
transient analysis, the Verilog-A simulator initializes the
variables with the previous value, while the SPICE
simulator does not.

e) Collapsible nodes that are used for instance to
collapse nodes when access resistances are not created.

3 RECOMMENDATIONS

3.1 Subset of Verilog-A

The Verilog-AMS hardware description language [1] is
a general-purpose behavioral language for analog and
mixed-signal systems available for both electrical and non-
electrical systems description. As such, it includes a
number of features that are not suited for compact
modeling.

Furthermore, the subpart of Verilog-AMS usable for
compact modeling is reduced if we add constraints related
to its integration into different electrical simulators. Here
after this subpart we recommend:
= Language: limit to the use of Verilog-A; digital Verilog-
HDL is not relevant here.
= Data types: limit to the use of integer and real data
types.
= Use only scalar, do not use vectors or arrays.
= Contribution statements: limit to the use of current
(flow) versus voltages (potential).
= Port branches: do not access currents through module
ports.
= Analog operators: limit to the use of ddt, ddx and idt,
limit the order to one. Do not combine these operators
between themselves.
= Do not use analysis functions.
= Do not use AC stimulus.
= Do not use “impure” system tasks and functions except
for debugging purposes or to report an error or a warning.
When possible we recommend restricting the usage to the
following system tasks and functions: mathematic system
functions, simulation control system tasks, $temperature,
$vt, hierarchical parameter system functions, and explicit
binding detection system functions.
= Do not use analog event control statements.
= The compact model is not hierarchical; do not use
module instantiation or any hierarchical structures.

3.2 Spice specificities

NSTI-Nanotech 2010, www.nsti.org, ISBN 978-1-4398-3402-2 Vol. 2, 2010

The previous recommendations are quite generic
concerning compact modeling, and weakly related to the
SPICE simulators themselves. We don’t intend to normalize
the writing of compact models, but to facilitate their
integration into different SPICE simulators. We recall that
the objectives are threefold:

1) To reduce human interventions and the associated
risks of having different behaviors in different simulators
and facilitate an efficient conversion for integration into
different SPICE simulators.

2) To reduce the memory footprint to be able to load
several tens of thousands of transistors in a conventional
SPICE simulator.

3) To reduce the simulation time, as it is of critical
importance for the analog designer that the compact models
run as quickly as possible in the SPICE simulator.

= Completeness: The model should be complete which
means that it should contain everything needed by the final
user for analog design. For instance, it should include
equations for NPN and PNP for a bipolar, or NMOS and
PMOS for a MOS.

= Port order: SPICE primitives use ordered port
connections; keep this order in the model, and use common
port names (i.e. drain, gate, source, bulk for MOS
primitives for instance).

= Disciplines and natures: limit to the use of electrical
discipline with voltage and current natures.

= System tasks and functions: limit to the use of explicit
binding detection system functions, $vt, $temperature, and
$mfactor.

= Common instance parameters: SPICE primitives have
predefined or common parameters; for instance W, L, AD,
AS, PD, PS and NF for MOS or AREA for bipolar. Use the
common parameter names and tag these parameters with a
dedicated property, for example (* spice="area" *) for the
parameter AREA of a bipolar. Do not change the definition
of such parameters so that the same netlist can be used with
different models.

= Instance/Model parameters: contrarily to Verilog-
AMS, SPICE makes a clear distinction between instance
and model parameters. This distinction is needed to be able
to define the characterization strategy, and to develop the
tools used to characterize the semiconductor manufacturing
processes and extract the model parameter sets. This
distinction can be specified with a parameter attribute, for
instance: (* type="instance" *).

= Parameter description: for each instance and model
parameter, give a short description using the info attribute,
and specify its unit if any using the attribute unit. Example:
(* desc="C-S punch-through voltage",

unit="vV" *) parameter real vpts = 100 from
(0:1007;

= OQOutput variables: they can be printed or plotted by
SPICE simulators. We recommend to define common
variables used by analog designers such as gm, gmds, gds
or transistor state for MOS transistors, or gm, gpi, gmu, go,
beta and ft for bipolar transistors. At the difference of other

823

824

variables, allocated as local variables in the stack, output
variables should be available between two Newton-
Raphson iterations and will be allocated in the heap.

= Functional sections: compact models have a large
number of equations, which are not all needed at every
phase of every type of analysis. Theoretically, starting from
the dependency tree and the distinction between model and
instance parameters, model builders should be able to
determine which equations are needed for each phase of
each analysis. In practice, model builders are far from this
objective. So, to help model builders generate more
efficient SPICE simulator code, we recommend splitting
the code at least into the following four sections using
named blocks. As theses sections generally correspond to
different phases of the compact modeling development, the
split is not too restrictive:

- Model initialization: this

initialization of the model.

- Instance initialization: this section contains

initialization of the instance.

- Instance evaluation: this section contains the kernel

of the model, it outputs current on ports in function of

voltages applied on ports.

- Noise: this section contains the noise contribution.
= Noise types: in SPICE, noise is generally divided into
three categories: thermal, flicker, shot noise. When
possible, we recommend to use one of these categories for
specifying the noise source label in Verilog-A.
= Port current probe: avoid use of I(<port_name>) probes
to define a current contribution. In some implementations,
it will add an extra node which penalizes simulation speed.
= ddt of ddt: avoid use of derivative or integral of order
greater than one. They are generally implemented by
adding extra nodes.
= Pure and impure: for allowing SPICE optimizations
such as bypass or linearization, the instance evaluation
section should be pure. This means that when called with
the same port voltages, the evaluation should always return
the same port currents and charges, whatever the simulation
time.

Collapsible nodes: collapsible nodes have the benefit
that they reduce the size of the system matrix. This is
particularly valuable in simulations where there are
numerous instances of a device, because reducing the
system size increases the simulation speed. They should be
defined during the instantiation phases, so they should be
function of model or instance parameters only. Avoid
collapsing two ports, or one port and the ground, as in
general, it will be implemented as an extra node.

section contains

4 CONCLUSION AND PERSPECTIVES

With the SPICE compatibility extensions of the
Verilog-AMS Language Reference Manual (LRM) version
2.3.1 [1], Verilog-A has the potential to revolutionize the
paradigm of analog design of integrated circuits and totally
replace SPICE.

The achievement of this goal depends on the adoption of
Verilog-A by all the actors concerned: final users,
semiconductor foundries, compact model developers as
well as EDA vendors. But both final users and
semiconductor foundries cannot accept degradation in
simulation speed or loss of functionality. This paper
introduces the sub-set of Verilog-A needed to write
efficient compact models for different Verilog-A
simulators. And, as SPICE simulators remain faster than
most Verilog-A simulators, this paper presents some
guidelines to help compact model developers improve the
integration of their Verilog-A models into SPICE
simulators while reaching the speed and the functionality of
C based compact models.

A recent study [10] shows that under some conditions,
some Verilog-A simulators can be as efficient as SPICE
simulators. The ball is now in the camp of the standard
groups and EDA vendors to make Verilog-A simulators as
fast as their SPICE counterparts, as well as to allow
Verilog-A to address the challenges of deep submicron
processes such as process dispersion, dynamic degradation,
power consumption, system-level complexity...

REFERENCES

[1] Accellera Verilog Analog Mixed-Signal Group:
http://www.accellera.org/activities/verilog-ams

[2] GSA Modeling Working Group: http://www.mos-
ak.org/

[3] CMC - Compact Model
http://www.geia.org/index.asp?bid=597

[4] L. Lemaitre, G. Coram, C. McAndrew, K. Kundert,
“Extensions to Verilog-A to support compact
device modeling”, Proc. 2003 IEEE International
Workshop on Behavioral Modeling and Simulation
(BMAS 2003).

[5] L. Lemaitre, C. McAndrew, S. Hamm, “ADMS -
Automatic Device Model Synthesizer,” CICC 2002.

[6] L. Lemaitre, C. McAndrew and W. Grabinski
“Standardization of Compact Device moding in
High Level Description Language”, Nanotech 2003,
Vol. 2

[7] ADMS-XML - Automatic Device Model
Synthesizer: http://mot-adms.sourceforge.net/

[8] This work 1is supported by the FEuropean
Commission FP7 under contract number 218255
(COMON)

[9] M. Mierzwinsk, P.O. Halloran, B. Troyanovsky and
R. Dutton, “Changing the Paradigm for Compact
Model Integration in Circuit Simulators Using
Verilog-A”, Nanotech 2003, Vol. 2

[10]G. Coram and M. Ding, “Recent Achievements in
Verilog-A Compact Modeling”, MOS-AK/GSA
Baltimore 2009

Council:

NSTI-Nanotech 2010, www.nsti.org, ISBN 978-1-4398-3402-2 Vol. 2, 2010

