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ABSTRACT 

 
Three new heteroleptic iridium complexes that combine 

two approaches, one leading to a high stability and the other 
yielding a high luminescence efficiency, are presented. All 
complexes contain a phenyl group at the 6-position of the 
neutral bpy ligand, which holds an additional, increasingly 
bulky substituent on the 4-position. The phenyl group 
allows for intramolecular π–π stacking, which renders the 
complex more stable and yields long-living light-emitting 
electrochemical cells (LECs). The additional substituent 
increases the intersite distance between the cations in the 
film, reducing the quenching of the excitons, and should 
improve the efficiency of the LECs. Indeed, LEC devices 
employing these complexes as the primary active 
component show shorter turn-on times, higher efficiencies 
and luminances, and, surprisingly, also demonstrate longer 
device stabilities. 

 
Keywords light-emitting electrochemical cells, iridium 
complexes, ionic transition-metal complexes, high 
efficiency, bulky substituents. 
 

1 INTRODUCTION 
 
Solid-state light-emitting electrochemical cells (LECs) 

have attracted considerable interest in the past few years.[1] 
LECs are single-component electroluminescent devices 
consisting of a charged luminescent material.[1, 2] The 
main characteristic of these devices is the insensitivity to 
the workfunction of the electrodes employed. This is due to 
the generation of a strong interfacial electric field caused by 
the displacement of the mobile ionic species towards the 
charged electrodes when an external electric field is applied 
over the device. Therefore, in contrast to organic light-
emitting diodes (OLEDs), air-stable electrodes, such as 
gold, silver, or aluminium, can be used, which is an initial 
requirement for obtaining unencapsulated devices. 

In its simplest form, a LEC consists of a single active 
layer composed entirely of an ionic transition-metal 
complex (iTMC). iTMCs are triplet emitters similar to 
those used in OLEDs. iTMC-based LECs exhibiting low 
turn-on times and emitting blue, green, orange, red, and 
even white light have been reported.[1] Recently, we 
reported on a new approach to iTMCs that led to a 
significant increase in the lifetime of LECs that employed 

them as the main component.[3, 4] This was achieved with 
an iridium complex exhibiting intramolecular -  stacking 
of two of its phenyl rings, resulting in a supramolecular 
cage formation. The simplest example is mentioned in this 
work for comparison and is referred to as complex 1 (see 
Fig. 1). This demonstrated that LECs can reach lifetimes 
suitable for first applications. Hence, all requirements seem 
to have been met to allow LECs to be applied in first 
products. 

However, the aforementioned achievements were 
obtained separately and never jointly in one device with a 
single complex. It is the object of this work to combine in 
one single complex two approaches, one leading to a high 
stability and the other yielding a high luminescence 
efficiency. High efficiencies can be reached by decreasing 
the quenching of the excitons by shielding the individual 
iTMCs from each other. This can be achieved by the 
introduction of bulky side groups to the periphery of the 
complex.[5] Bulky groups in the iTMC can also increase 
the stability of the LECs as they render the complex less 
susceptible for interaction with water.[6, 7] That interaction 
was identified as the primary reason for the short lifetimes 
of ruthenium based LECs.[8, 9] Three heteroleptic iridium 
complexes combining the above-mentioned features with 
cyclometallated 2-phenylpyridine ligands (Hppy = 2-
phenylpyridine) were prepared, [Ir(ppy)2(Meppbpy)]PF6 (2, 
Meppbpy = 4-(3,5-dimethoxyphenyl)-6-phenyl-2,2'-
bipyridine), [Ir(ppy)2(C10ppbpy)]PF6 (3, C10ppbpy = 4-(3,5-
bis(decyloxy)phenyl)-6-phenyl-2,2'-bipyridine), and 
[Ir(ppy)2(G1ppbpy)]PF6 (4, G1ppbpy = 4-(3,5-bis(3,5-
bis(dodecyloxy)benzyloxy)phenyl)-6-phenyl-2,2'-
bipyridine), and are presented in Figure 1. 

All complexes contain a phenyl group at the 6-position 
of the neutral 2,2'-bipyridine (bpy) ligand, which holds an 
additional, increasingly-bulky substituent on the 4-position. 
The phenyl group allows for the intramolecular -  
stacking, which renders the complex more stable and yields 
long-living LECs.[3, 4]The additional substituents increase 
the intersite distance between the cations in the film 
reducing the quenching of the excitons and should increase 
the efficiency of the LECs. Density functional theory (DFT) 
calculations indicate that all iTMCs have the desired -  
intramolecular interactions between the pendant phenyl ring 
of the bpy ligand and the phenyl ring of one of the ppy 
ligands. The photoluminescence quantum  
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where b is the recombination efficiency (equal to 1 for two 
ohmic contacts[13]), ϕ is the fraction of excitons that decay 
radiatively, and n is the refractive index of the glass 
substrate and is equal to 1.5 (the factor 1/2n2 accounts for 
the coupling of light out of the device). As the Ir(III)-based 
complexes can efficiently harvest both singlet and triplet 
excitons, ϕ should resemble the PLQE. Hence, the 
efficiency of the device is mainly determined by the PLQE 
values of the iTMC emitter in the thin film configuration 
used in the devices. According to this simple relationship 
the EQE’s for the device using complex 1, 2, and 3 should 
then be 4.6, 5.3, and 7.5 %, respectively. These predicted 
values are higher than those obtained experimentally for the 
different LECs, indicating that either the outcoupling factor 
is not accurate or that not all charge carriers recombine. In 
particular, the LECs using 1 have a significantly lower 
experimental EQE, whereas for those using 3 the error 
between the predicted and observed EQE is not that large, 
indicating that the latter represents a rather optimized 
device configuration. 

The highest current densities are observed for the 
devices making use of complex 1 and are approximately 
twice as high as those for the devices making use of 
complex 2 or 3. However, due to the increased device 
efficiencies, the maximum luminances obtained for the 
devices using 2 and 3 are significantly higher than that 
found for the reference device, reaching 183 and 284 cd/m2, 
respectively, at only 3 V bias. 

The lifetime, when expressed as the time to reach half 
of the maximum brightness (t1/2) decreases with faster ton. 
This trend, although not understood, has been observed for 
many LECs.[1] However, as mentioned in the work by 
Kalyuzhny et al., t1/2 is not a good value to compare the 
lifetime of LECs: t1/2 can only be used when the maximum 
luminances of the different devices are similar.[8] It is 
known that in electroluminescent devices the time to reach 
the half of the initial luminance depends strongly on the 
initial luminance chosen. Since the devices described in this 
work have very different maximum luminances at the same 
driving voltages, the device lifetimes cannot be compared 
using the t1/2 values. In their work, Kalyuzhny et al. 
proposed an alternative method, where the lifetime is 
expressed as the total emitted energy (E1/5) up to the time 
the luminance reaches 1/5th of the maximum value (t1/5) for 
a cell area of 3 mm2.[8] When the devices are compared in 
this way, we obtain the surprising result that the devices 
using 2 or 3 show higher values of the total emitted energy 
(17.2 and 17.4 J, respectively) than the reference device 
(13.6 J). Hence, the introduction of the bulky side groups 
not only increases the device efficiency but also increases 
the device stability. 
 

4 CONCLUSION 
 
In conclusion, three new ionic iridium(III) complexes 

were prepared that contain bulky groups of increasing size 

and have the ability to form intramolecular cages through -
* interactions between the pendant phenyl ring of a 6-

phenyl-2,2'-bipyridine bpy ligand and one of the phenyl 
rings of the ppy ligands. With increasing size of the bulky 
side groups the photoluminescence quantum efficiency of 
the complexes increases. When used to prepare simple 
LECs, complexes 2 and 3 resulted in very efficient devices 
with high luminances. Additionally, the total emitted 
energy during the lifetime of the devices was larger than the 
device based on the unsubstituted reference complex. 
Hence, substituting the complex on the periphery with large 
(electronically inactive) groups greatly improves the 
efficiency, the luminance, and the stability of the LECs 
employing them. It appears that this strategy can-not be 
extended indefinitely, as we observed no 
electroluminescence from the device employing the 
complex with the largest side group. The reason for that 
inability is unclear but might be related to a too-large 
intersite distance between the cations. 

 
REFERENCES 

[1] J. D. Slinker, J. Rivnay, J. S. Moskowitz, J. B. 
Parker, S. Bernhard, H. D. Abruña, G. G. Malliaras, 
J. Mat. Chem. 2007, 17, 2976. 

[2] Q. Pei, G. Yu, C. Zhang, Y. Yang, A. J. Heeger, 
Science 1995, 269, 1086. 

[3] H. J. Bolink, E. Coronado, R. D. Costa, E. Ortí, M. 
Sessolo, S. Graber, K. Doyle, M. Neuburger, C. E. 
Housecroft, E. C. Constable, Adv. Mater. 2008, 20, 
3910. 

[4] R. D. Costa, E. Ortí, H. J. Bolink, S. Graber, C. E. 
Housecroft, M. Neuburger, S. Schaffner, E. C. 
Constable, Chem. Commun. 2009, 2029. 

[5] H. C. Su, F. C. Fang, T. Y. Hwu, H. H. Hsieh, H. 
Chen, G. Lee, S. Peng, K. T. Wong, C. C. Wu, Adv. 
Funct. Mater. 2007, 17, 1019. 

[6] H. J. Bolink, L. Cappelli, E. Coronado, M. Graetzel, 
M. Nazeeruddin, J. Am. Chem. Soc. 2006, 128, 46. 

[7] H. J. Bolink, L. Cappelli, E. Coronado, M. Graetzel, 
E. Ortí, R. D. Costa, M. Viruela, M. K. 
Nazeeruddin, J. Am. Chem. Soc. 2006, 128, 14786. 

[8] G. Kalyuzhny, M. Buda, J. McNeill, P. Barbara, A. 
J. Bard, J. Am. Chem. Soc. 2003, 125, 6272. 

[9] L. J. Soltzberg, J. Slinker, S. Flores-Torres, D. 
Bernards, G. G. Malliaras, H. D. Abruna, J. S. Kim, 
R. H. Friend, M. D. Kaplan, V. Goldberg, J. Am. 
Chem. Soc. 2006, 128, 7761. 

[10] F. Alary, J. L. Heully, L. Bijeire, P. Vicendo, Inorg. 
Chem. 2007, 46, 3154. 

[11] R. J. Watts, J. Crosby, J. Am. Chem. Soc. 1971, 93, 
3184. 

[12] D. W. Thompson, J. F. Wishart, B. S. Brunschwig, 
N. Sutin, J. Phys. Chem. A 2001, 105, 8117. 

[13] G. G. Malliaras, J. C. Scott, J. Appl. Phys. 1998, 83, 
5399. 

 

NSTI-Nanotech 2010, www.nsti.org, ISBN 978-1-4398-3402-2 Vol. 2, 201052




