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Abstract

Compact models for quantum mechanical
behavior of transistors are becoming increas-
ingly important as shrinking transistor sizes
bring the oxide thickness to below four nanome-
ters. Analytic solutions to Schrödinger’s equa-
tion are available only for a limited class of
energy potential profiles. Much use has been
made of the Stern, [1], triangular approxima-
tion for the energy well close to the gate oxide.
Here an exponential approximation for the sili-
con potential is used to derive an improved ap-
proximation to the energy band levels. The ex-
act analytical solution to Schrödinger’s equa-
tion is known for this type of potential. Asymp-
totic approximations to the wave functions are
used to find accurate compact formulae for
the exact energy levels. These formulae agree
more closely with exact numerical results (from
SCHRED [2]) for the energy band levels than
Stern’s results.
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1 Introduction

With silicon-oxide dielectric thickness for
MOSFET devices shrinking below 4 nm in-
creasing quantum mechanical effects perturb
the device characteristics significantly from the
predictions of classical models [3]. Quantum
effects reduce source-to-drain current from their
classical estimates, and tunneling current in
the gate region can cause battery run-down.
In the quantum mechanical regime the average

inversion charge density is no longer at a max-
imum at the dielectric boundary. With zero
charge density at the dielectric-semiconductor
surface the effective oxide thickness and the
semiconductor band gap are increased over the
predictions of the classical model. In order to
effectively simulate these nanoscale chips using
SPICE, accurate compact models are needed
for these quantum effects.

We develop a model for the potential in
the semiconductor, previously studied by [4],
which approximates the asymptotic model of
[5]. This develops previous work of the au-
thors from [3]. In this approximation we have
a potential which approximates the behavior
of the true potential both near the dielectric-
semiconductor boundary, and in the bulk re-
gion. Moreover, it yields a version of the Schrödinger
equation with a known analytic solution. We
use this solution to develop new approxima-
tions to the energy levels. Furthermore, such a
model may be used in various approximations
to the tunneling current.

2 Approximations to the
Potential

The quantum mechanical electrostatic po-
tential ψ in the MOSFET is modeled by solv-
ing in the quasi-one-dimensional approxima-
tion the coupled Schrödinger-Poisson differen-
tial equations. The Poisson equation,

εs
d2ψ

dx2
= q(p− n + N), (1)
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requires hole and electron densities from the
Schrödinger equation,

Eζ(x) = − !2

2m∗
d2ζ

dx2
+ V (x)ζ(x). (2)

In order to derive a compact model for appli-
cation to the n-channel MOSFET we estimate
the potential V = −qψ using an approxima-
tion to equation (1).

2.1 Triangular Approximation

A first approximation for the potential near
the barrier between the semiconductor and the
gate region is to take the first term of the Tay-
lor Series expansion at x = 0. This leads to
approximation called the triangular-potential
in the literature [1], [3]. Note that the poten-
tial is shifted by the surface potential so that
it is zero at the surface x = 0.

V = qEsx. (3)

This approximation with reference to inversion
layers is due to Stern [1]. The linear potential
yields a Schrödinger equation with a known
analytic solution in terms of Airy Functions.
With boundary conditions on the wave func-
tion ζ(0) = ζ(∞) = 0 and using asymptotics
of the Airy functions for large argument the
energy levels are given by

Etriangular
j =

[
!2

2m∗

]1/3 [
3
2
qπEs(j + 3/4)

]2/3

(4)
with j = 0, 1, 2, ...

2.2 Exponential Approximation

We model the potential energy in the semi-
conductor as an exponential,

V = α(1− e−x/d). (5)

This approximation has been used previously
in [4]. The parameters α and d are chosen to

approximate the potential obtained from [5].
That is

α = lim
x→∞

V (x)

d =
α

qEs
.

Expressions for these values in terms of gate
voltage, doping level, and other device param-
eters are given by explicit formulas in [5]. The
time independent Schrödinger Equation (2) is
solvable with this exponential potential. Call-
ing µ2 = !2

2m and substituting in the approxi-
mated form of the potential, (2) becomes:

d2ζ

dx2
+

1
µ2

(E − α(1− e−x/d))ζ = 0 (6)

Making the substitution

τ =
2d

µ

√
αe−x/2d

(6) is transformed to become Bessel’s Equa-
tion:

τ2 d2ζ

dτ2
+ τ

dζ

dτ
+

[
τ2 −

(
2d

µ

√
α− E

)2
]

ζ = 0.

(7)
The solution to (7) can be written in terms
of Bessel functions of the first kind with ν =
2d
µ

√
α− E:

ζ(τ) = C1 Jν(τ) + C2 J−ν(τ)

Jν and J−ν constitute the two linearly inde-
pendent solutions to the second order ODE.
Since ν is not an integer, this is a general so-
lution.

J−ν(τ) blows up as τ → 0, so imposing the
boundary condition ζ = 0 as x → ∞ requires
C2 = 0, leaving us with the solution

ζ(x) = C1J 2d
µ

√
α−E

(
2d

µ

√
αe−x/2d

)
. (8)

To determine the energy band levels we en-
force the approximate boundary condition of
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no tunneling, ζ(0) = 0. The energy band lev-
els E < α must satisfy:

ζ(0) = J 2d
µ

√
α−E

(
2d

µ

√
α

)
= 0. (9)

The boundary conditions ζ(0) = ζ(∞) = 0
result in an eigenvalue problem for the energy
level E similar to the one for the triangular po-
tential. That eigenvalue problem is expressed
in the equation for E which we obtain from (9)
by substituting a =

√
α

α−E = sec β

Jν(ν sec β) = 0. (10)

For ν % 1 there is an asymptotic expansion [7]
,

0 = Jν(ν sec β) ∼
cos

[
ν(tanβ − β)− 1

4π
]

√
1
2νπ tanβ

.

(11)
or

tanβ − β =
(j + 3

4 )π
ν

=
(j + 3

4 )π
2d
µ

√
α

1
cos β

.

Calling κ = (j+ 3
4 )π

2d
µ

√
α

,

sinβ − β cos β = κ. (12)

For low energy levels it is expected that β will
be small enough (on the order of 0.5) to make
Taylor series expansions for sinβ and cos β in
(12) however not so small as to invalidate the
asymptotic in equation (11). Making these ap-
proximations yields

β ≈ (3κ)1/3. (13)

When we take the first term of the Taylor se-
ries for sinβ in E

α = sin2 β this approximation
for β (13) directly yields the Stern triangular
result of (4). Using more sophisticated approx-
imations and putting β = (3κ)1/3ϕ yields

ϕ3 − 3δ(3κ)2/3ϕ5 =
(
1− γ(3κ)2/3ϕ2 + δ(3κ)4/3ϕ4

) (
1− 1

3
(3κ)2/3ϕ2

)−3/2

,

where the constants δ and γ and the approxi-
mations used are defined in the appendix. Tak-
ing (13) or ϕ1 = 1 as an initial guess, we get
the improved approximation

ϕ3
2 =

1− γ(3κ)2/3

1− 3δ(3κ)2/3

(
1− 1

3
(3κ)2/3

)−3/2

.

(14)
We now have an improved approximation for
the energy level E

α = sin2 β where β = (3κ)1/3ϕ2

and ϕ2 is given by (14).

3 Results and Comparison

0 0.5 1 1.5 2 2.5

x 10
8

50

100

150

200

250

300

350

400

450

500

550

E
ox

(V/m)

s
u
b
 b

a
n
d
 e

n
e
rg

y
 (

m
e
V

)

 

 

New model

Triangular

Schred

Student Version of MATLAB

Figure 1: Energy band level for triangu-
lar and exponential approximations compared
with numerical results from SCHRED at vari-
ous Eox. The first two energy levels are shown.

The energy band levels derived from (14)
is a very accurate approximation of the exact
energy band levels of the exponential model
potential (5). More importantly, it is an im-
proved approximation to the ground level en-
ergy for a wide range of surface electric fields
as can be seen in Figure 1.
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