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ABSTRACT 
 
This work is a continuation of [1, 2]. The analytical 

symmetric and asymmetric lightly doped DG-MOSFET 
device electrostatic potential compact model presented here 
improves the compact model accuracy without any 
iteration. The model is developed using the Lambert 
Function and a 2-dimensional (2-D) parabolic electrostatic 
potential approximation across the device is assumed. Our 
compact models are compared with the 2-D numerical data 
from Sentaurus [3] and give excellent results 
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1 INTRODUCTION 
 

      DG-MOSFET device architecture is promising to 
overcome the short channel effects for CMOS scaling into 
the sub-30 nm regime. Although there are some 
publications on compact modeling of the DG-MOSFET, 
most of the work is focusing on symmetric and undoped 
DG-MOSFET devices such as [6] and [7]. Some 
asymmetric DG-MOSFET compact models in the literature 
such as [8-10] usually consider the asymmetry arises only 
from different flatband voltages and oxide thicknesses at 
the two gates. In [2] we tried to address asymmetry due to 
different oxide thicknesses, flatband voltages and applied 
gate voltages at the two input gate terminals altogether. But 
our simulation of the asymmetric devices at different back 
and front gate biases indicates that the model accuracy 
deteriorates rapidly out of the linear region as saturation 
takes over. In this paper we improved the electrostatic 
potential compact model accuracy of [2] in the saturation 
region.  

 

2 COMPACT DG-MOSFET MODELS 
 

The Poisson equation for the electrostatic potential ψ(X,Y) 
in uniformly doped silicon is   
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    where q represents electron charge, sε  semiconductor 
permittivity, V quasi-Fermi potential: V=0 at the source and 
V=Vds at the drain, aN silicon doping, k  Boltzmann 

constant, T temperature, X direction perpendicular to the 
channel at the mid-section, Y direction along the channel 
from the source end, in  intrinsic density and the electron 

density is ⋅= −       /)( thVV
ienn ψ   

    The continuity of the electric displacement at the 
silicon/silicon-oxide interfaces gives the boundary 
conditions as 
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     where Vgf, Vgb are front and back gate voltages; sfψ , 

sbψ  surface potentials; Toxf , Toxb oxide thicknesses; Δ fφ , 

Δ bφ  work function differences or flat band voltages, and 

oxε oxide permittivity. 
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Using the scaled variables below, the Poisson equation (1) 
is rewritten as 
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    In this paper dimensional voltages and lengths, such as 
Vgf and Ts, are denoted by capital letters. Lower-case letters, 
vgf and ts, are used to denote the same quantities non-
dimensionalised. Exact analytical solutions to (3) are not 
available. However, a numerical solution of (3) indicates 
that a parabolic potential approximation in x is a good 
approximation for low voltage application.  A parabolic 
potential form in x has been used in [4] to model sub-
threshold swing. Here we assume the form  
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where w0(y)  is the scaled potential along the mid-section, 
x=0. 
     Using the boundary conditions (2), (3) and (4) gives 
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where the surface potentials are given by, 
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Explicit solutions can be calculated for wsf and wsb from 

(6):  
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where γs are the surface potential correction factors and 

are used as fitting parameters with numerical data, and      
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The mid-section electrostatic potential, w0(y), is 

determined from the ordinary differential equation: 
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The second derivative terms b’’x and c’’x2 are neglected in 
(12); this equation is approximated by its behavior at the 
mid-section, x=0. A typical value of εL is 211.43nm. The 
long channel approximation of the mid-section potential 
can be determined from (12) by taking 02 →ε , which 
gives 
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where W is the Lambert function, see [5]. We 
adopt α/*

00 ww → , where α and θ are the correction 
factors that we introduced to account for changes in the 
mid-section potential due to the short channel, parabolic 
potential approximation and 2-D effects. 
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where l and vds are the scaled dimensionless channel length 
and drain voltage respectively, the fitting parameter α has a 
very weak dependence on the drain voltage and device 
channel length (see [2]). The introduction of θ in (15) 
improves the model accuracy in saturation when different 
gate voltages applied at the front and back gates. 

The total mobile charge per unit gate area for the 
asymmetric DG MOSFET is given by 
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3 RESULTS AND DISCUSSION 
 

     The numerical simulations are obtained for comparison 
by solving Poisson’s equation and the electron continuity 
equation, as well as the drift−diffusion equation without 
considering quantum effects using the Sentaurus Device 
Simulator [3]. The temperature is fixed at 300 K without 
self-heating. For all simulation results a zero work function 
difference or flat band voltage is assumed.  
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Figure 1: The mid-section potential versus relative front 
gate voltage for 20nm silicon film, α0=1.4 and θ=1.5E+7. 
Circles are numerical and solid line is the compact model. 
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Figure 2: The front gate surface potential versus relative 
front gate voltage for 20nm silicon film, α0=1.4 , γs1f=4 and 
θ=1.5E+7. Circles are numerical and solid line is the 

compact model. 
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Figure 3: The mid-section potential versus relative gate 
voltage for 5nm silicon film, α0=0.96 and θ=1. Circles are 

numerical and solid line is the compact model. 
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Figure 4: The gate surface potential versus relative gate 
voltage for 5nm silicon film, α0=0.96, γs1=0.83 and θ=1. 

Circles are numerical and solid line is the compact model. 

 

     Figures 1-2 show asymmetric device and Figures 3-4 
show the symmetric device simulation results. Our 
electrostatic potential comparisons in Figures 1-4 indicate 
that the compact model gives a good approximation. The 
fact that the fitting parameter θ varies substantially is due to 
the effect of voltages at the exponent in (15). 
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