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ABSTRACT 

MEM-resonators are recognized key components for 
future sensing, wireless and communications applications. 
Si-based resonators have gained special interest since they 
offer the perspective to replace bulky quartz resonators on-
chip, maintaining high Q-factor and reaching high 
frequencies. In various applications, e.g., time-reference, 
the temperature (T-) stability is of paramount importance. 
We propose a novel passive compensation of the T-drift of 
electrostatically-driven MEM-resonators. Key in our 
implementation is the T-driven modulation of the 
transduction gap that, controlled by design, can fully 
balance the T-drift due to the intrinsic material properties of 
the resonator. The further selection of the optimum bias 
working point allows compensating for potential processing 
inaccuracies. We apply this idea to bulk-mode bar 
resonators and derive a condition for full T-stabilisation. 
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1 INTRODUCTION 

MEM-resonators are recognized as key components for 
future sensing, wireless and communications applications 
[1]-[3]. With their demonstrated high-Q, high-level of 
integration, small size and low cost, these components 
promise to achieve high detection sensitivity, even cheaper 
and more compact handsets with even longer battery life. 
Silicon-based resonators have gained special interest since 
they offer the perspective to replace bulky quartz resonators 
on-chip, i.e. above CMOS, maintaining high Q-factor and 
reaching high frequencies, all of this based on relatively 
standard processing techniques. 

In various applications, e.g., timing-reference, the 
temperature stability is of paramount importance. 
Typically, the intrinsic temperature dependence of the 
resonance frequency, fres, is dominated by ET, the 
temperature coefficient of Young’s modulus (E). For Si-
based MEM resonators this temperature dependence is 
much larger than for quartz crystal resonators, and too large 
to allow the passive implementation of these resonators in 
high-end applications over wide temperature ranges, e.g.,    
-40°C to 85°C. 

To circumvent this problem, two main approaches have 
been proposed in the literature: 
1) Coating the resonator with positive ET materials, e.g., 

SiOx, allows lowering the ET of the effective material 
composing the resonator, improving its overall 
temperature-stability [3][4]. This passive approach 
increases the processing complexity and costs, is often 
not effective to fully compensate the temperature-drift 
and can significantly degrade other resonator 
characteristics, e.g., its Q-factor. 

2) Implementing an active control loop, composed of a 
thermometer and a heater, around the resonator allows 
limiting its temperature-excursion, thus its apparent 
temperature-drift, at the expense of increased design and 
process complexity as well as increased power 
consumption [5]. 

In this paper, we propose a novel passive compensation 
of the T-drift of electrostatically-driven MEM-resonators 
that extends the concepts presented in [6]. Key in our 
implementation is the temperature-driven modulation of the 
electrostatic transduction gap that, controlled by design, can 
fully balance the temperature-drift due to the intrinsic 
material properties of the resonator. The further selection of 
the optimum bias working point allows compensating for 
potential processing inaccuracies. We apply this idea to 
bulk-mode bar resonators and derive a closed form formula 
for the full temperature-stabilisation, working point and 
material selection. 

 
Figure 1 SEM photograph of a 50x100μm bar resonator [2] 
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W0/d0. Consider for example the device simulated in Figure 
9. Wider, with W=200μm, 45V suffice to compensate its 
temperature-drift at 25°C. 

 
Figure 8 Passive T-compensation of the bar from Figure 1 
with identical characteristics as in Figure 4 and Figure 5 at 
T=25°C and in optimum conditions for the full T-range 
considered - CTEsub=4.3e-6ppm/°C (sapphire) 

 
Figure 9 Passive temperature-compensation of bar 
resonator at room temperature with low voltage compared 
to the room temperature DC pull-in voltage - W25=200μm 

As a final remark, note that the previous developments, 
presented in the case of electrostatically transduced 
resonators, can be directly transposed to the magnetic 
transduction of MEM resonators. For this, the quantities V 
(voltage), q (charge) and ε (permittivity) have simply to be 
substituted with nI (total winded current), f (magnetic flux) 
and μ (permeability). 

4 CONCLUSIONS 

In this paper, we proposed a novel passive 
compensation of the temperature-drift of electrostatically-
driven MEM-resonators. Key in our implementation is the 
temperature-driven modulation of the transduction gap that, 
controlled by design and bias voltage, can fully balance the 
T-drift due to the intrinsic material properties of the 
resonator. The further selection of the optimum bias 
working point allows compensating for potential processing 

inaccuracies. We applied this scheme to bulk-mode bar 
resonators and derived a condition for full temperature-
stabilization. In case of 80MHz Si-bars, we simulated an 
improvement of the T-drift between -45°C and 85°C from 
an intrinsic value of 2966ppm to 82ppm by processing the 
device on a sapphire substrate and selecting a bias point 
equal to 180.75V. 
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