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ABSTRACT

A methodology is proposed for the model order re-
duction of finite element approximations of MEMS de-
vices under random input conditions. In this approach,
the reduced order system matrices are represented in
terms of their convergent orthogonal polynomial expan-
sions of input random variables. The coefficients of these
polynomials, which are matrices, are obtained by re-
peated, deterministic model order reduction of finite el-
ement models generated for specific values of the input
random variables. These values are chosen efficiently
in a multi-dimensional grid using a Smolyak algorithm.
The stochastic reduced order model is represented in
the form of an augmented system which can be used for
generating the desired statistics of the specific system
response. The proposed method provides for significant
improvement in computational efficiency over standard
Monte Carlo.

Keywords: stochastic, model order reduction, mems,
random, finite element

1 INTRODUCTION

Model Order Reduction (MOR) has facilitated the
development of efficient computational tools for MEMS
analysis and design [1]. However, in their majority, re-
duced order modeling tools assume a deterministic defi-
nition of the structure being modeled. Variations and/or
uncertainty in geometric attributes, material properties
and operating conditions are becoming a significant im-
pacting factor in MEMS device performance. These
need to be accounted for in model order reduction for
better design and optimization. This has led to a lot of
research in the development of variational and paramet-
ric models for analysis of MEMS devices. In this paper,
we put forward a framework for performing model order
reduction in the presence of uncertainty.

There are broadly two different approaches for han-
dling uncertainty, statistical and non-statistical. In terms
of statistical techniques, brute-force Monte Carlo com-
putation [2] is the most straightforward approach. In
such a method, one considers a large number (typi-
cally greater than 10000) realizations (or samples) of
the model and a deterministic problem is solved for each

one of these realizations. The data is then used for the
development of the statistics of the desired observable
quantity. Clearly, such an approach is time consuming,
with a convergence rate in obtaining reliable statistics
of O(N−1/2), where N is the number of samples.

In terms of non-statistical approaches, polynomial
chaos, a spectral expansion of the stochastic processes
in terms of orthogonal polynomials has been extensively
used [3], [4]. In the context of model order reduction,
since conventional polynomial chaos requires significant
new code development, its utilization in conjunction with
existing MOR technology is hindered by the overhead of
new algorithm development. An answer to this difficulty
is the stochastic collocation method [5], which combines
the advantages of both stochastic Galerkin methods and
classical Monte Carlo approaches. The key idea is to
use a “decoupled” polynomial interpolation in multi-
dimensional random space. Thus, all that is required
is a run of the deterministic solver for each point in the
multi-dimensional parameter space. These points can
be generated using various algorithms, such as Smolyak
sparse grids. Stochastic collocation is also more efficient
than brute force Monte Carlo due to the smart choice
of interpolation points. In [6], Xiu described the use of
Smolyak sparse grids for parametric uncertainty analy-
sis.

In this paper, our focus is to develop a method that
treats MOR as a black-box deterministic solver. In other
words, the objective is for the approach to be indepen-
dent of the specific MOR algorithm employed. For the
purpose of illustration, we make use of the Krylov sub-
space MOR algorithm.

2 THEORY

2.1 Deterministic Reduced Order

Model

The dynamic behavior of a MEMS device can be
described through a coupled electro-mechanical model
which is represented in the form of following second-
order system of equations

Mẍ(t) +Dẋ+Kx = Felec(x, t) (1)

whereN is the number of degrees of freedom in the finite
element approximation, the vector x is the displacement
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of the movable electrode, the matrices M,D,K are in
RN×N . Felec(x, t) represents the electrostatic force of
attraction acting on the movable electrode. Note that it
is non-linearly dependent on the state vector x. In order
to describe the model order reduction methodology, we
adopt a terminology consistent with the one used in [1].
The matrices M,D,K are assumed to be time-invariant.
Henceforth, we use the subscript org for indicating the
full-order finite element model, ΣN . Thus, we have,

Morgẍ(t) +Dorgẋ+Korgx = borgu(t)

y(t) = ltorgx(t) (2)

where borg, lorg ∈ RN are input distribution and output
measurement vectors respectively.

A Second Order Arnoldi (SOAR) method is used for
performing MOR [1]. In this approach, a transformation
matrix Q in RN×n is developed where n << N . n

determines the size of the reduced order system, Σn.
The reduced order system can then be computed as,

Mz̈(t) +Dż +Kz = bu(t)

y(t) = lT z(t) (3)

where,

K = QTKorgQ, D = QTDorgQ M = QTMorgQ

b = QT borg l = QT lorg (4)

The K,D,M matrices are now in Rn×n.

2.2 Stochastic Reduced Order Model

Next, it is assumed that the material and/or the ge-
ometric properties of the structure exhibit uncertainty.
This uncertainty leads to randomness in the description
of the system matrices. Let the stochastic reduced order
system Σ̃n be represented by,

M̃ ¨̃z(t) + D̃ ˙̃z + K̃z̃ = b̃u(t)

ỹ(t) = lT z̃(t) (5)

where the superscript ∼ is used to indicate randomness.
Thus, it is,

K̃ = Q̃T K̃orgQ̃, D̃ = Q̃T D̃orgQ̃, M̃ = Q̃T M̃orgQ̃

l̃ = Q̃T l̃org, b̃ = Q̃T b̃org

The next step involves the representation of randomness
in the original system matrices. This is done by making
use of polynomial chaos expansion [3], which is an ex-
pansion in terms of orthogonal polynomials of random
variables. For the purpose of illustration and brevity,
two input variables are assumed to be random. Con-
sidering a linear expansion in both of the input random
variables, we have,

K̃org = K0 +K1ξ1 +K2ξ2, D̃org = D0 +D1ξ1 +D2ξ2 (6)

M̃org = M0 +M1ξ1 +M2ξ2, Q̃ = Q0 +Q1ξ1 +Q2ξ2

Note that in the above expansions the coefficients (such
as K0,K1) are deterministic matrices, while 1, ξ1, ξ2 are
orthogonal polynomials in the two-dimensional random
space [3]. Once the coefficient matrices have been found,
the expansions above can be computed to evaluate any
system matrix corresponding to a particular value of the
input random variables. One way of computing the coef-
ficients is by integrating both sides over two-dimensional
random space. For example,∫

K̃orgρ1ρ2dξ1dξ2 =

∫
(K0 +K1ξ1 +K2ξ2)ρ1ρ2dξ1dξ2

K0 =

∫
K̃orgρ1ρ2dξ1dξ2 (7)

where ρ1,ρ2 are probability density functions (pdf) cor-
responding to the random variables ξ1,ξ2, respectively.
Let I(f) denote the integrals in (7), where

f = K̃orgρ1(ξ1)ρ2(ξ2).

The accuracy of finding these coefficients depends on
the accuracy in the calculation of these integrals. Their
efficient and accurate calculation is discussed in the next
subsection.

Once these coefficients are obtained, an augmented
reduced order system can be defined. Using (5) and (6),⎡
⎣ M0 M1 M2

M1 M0 0
M2 0 M0

⎤
⎦
⎡
⎣ z̈0

z̈1
z̈2

⎤
⎦+

⎡
⎣ D0 D1 D2

D1 D0 0
D2 0 D0

⎤
⎦
⎡
⎣ ż0

ż1
ż2

⎤
⎦

+

⎡
⎣ K0 K1 K2

K1 K0 0
K2 0 K0

⎤
⎦
⎡
⎣ z0

z1
z2

⎤
⎦ =

⎡
⎣ b0

b1
b2

⎤
⎦u(t)

The above system may be cast in compact matrix form
as,

Maug z̈aug +Daug żaug +Kaugzaug = baugu(t) (8)

The augmented system matrices Maug, Daug,Kaug are
3n× 3n.

2.3 Numerical Integration

In the above development the accurate and efficient
computation of the coefficient stiffness matrices using
the integrals of the type in (7) is of significant impor-
tance. There exist several well-established rules for the
case of one-dimensional (1-d) integration (e.g., the use
of Chebyshev polynomials). The challenge lies in ex-
tending these rules to multiple dimensions efficiently.
Consider an N -dimensional random space. Let Iqii , i =
1, 2, .., N , denote the 1-d integration rule in the ith di-
rection, involving qi points. Thus

I
qi
i [f ] =

qi∑
j=1

f(uj
i ).w

j
i (9)

NSTI-Nanotech 2010, www.nsti.org, ISBN 978-1-4398-3402-2 Vol. 2, 2010578



based on nodal sets

Θ1
i = (u1

i , ..., u
qi
i ) ⊂ Γi (10)

A straightforward approach would be to use a Tensor
product. However, the number of points in this ap-
proach grows rapidly as qN .

IQ[f ] ≡ (Iq1i ⊗ ...⊗ I
qN
i )[f ]

=

q1∑
j1=1

...

qN∑
jN=1

f(uj1
1 , ..., u

jN
N ).(wj1

1 ⊗ ...⊗ w
jN
N ) (11)

An alternative and more efficient approach makes use of
Smolyak sparse grids. The Smolyak algorithm is a smart
linear combination of product formulas chosen in such a
way that an integration property that holds for N = 1 is
preserved as accurately as possible for the case of N > 1.
Only products with a relatively small number of points
are used and the resulting nodal set has significantly less
number of nodes compared to those generated by the
tensor product rule. Details of the Smolyak algorithm
can be found in [7].

The Smolyak algorithm is given by

IQ(f) ≡∑
J−N+1≤|i|≤J

(−1)J−|i| ·

(
N − 1
J − |i|

)
· (Ii1 ⊗ ..⊗ IiN )

where i = (i1, ..., iN ) ∈ NN . To compute IQ(f) we only
need to evaluate the function on the “sparse grid”

ΘN ≡ H(J,N) =
⋃

J−N+1≤|i|≤J

(Θ1
i1 × ...×Θ1

iN ) (12)

If P denotes the total degree of the multi-variate orthog-
onal polynomial, then it can be shown that the number
of points in a Smolyak grid varies as [6],

Q ∼
2P

P !
NP , P fixed. (13)

Clearly, the dependence on dimension N is much weaker
than the tensor product rule. The number of points in
the Smolyak sparse grid are much smaller compared to
those in Tensor product grid for equivalent accuracy.

2.4 Algorithm for Stochastic MOR

With the pertinent mathematical framework in place
the proposed algorithm for stochastic model order re-
duction is as follows:

• Definition of the number and type of distribution
of input random variables.

• Choose an appropriate order and type of polyno-
mial chaos expansion (eqn.(6)).

• Generate a Smolyak sparse grid. Each point rep-
resents a combination of values for different input
random variables (eqn. (11)).

• For each point on the sparse grid, calculate the
full-finite element system matrices. Perform de-
terministic MOR for each system to generate the
corresponding transformation matrix (eqns. (3)
and (4)).

• Using above information, calculate the coefficients
in the polynomial expansion (eqn. (7)).

• Compute the augmented system using the coeffi-
cients (eqn. (8)).

• The augmented system can be used for calculating
the mean, standard deviation and other statistics
of the system response.

3 Numerical Study - Cantilever switch

In this section, we consider a cantilever switch (Fig.
1(a)) for demonstrating the application of our proposed
algorithm for stochastic MOR. The top electrode is 80
μm long, 0.5 μm thick and 10 μm wide and is suspended
0.7 μm over the bottom electrode. A Youngs modulus
of 169 GPa, a mass density of 2231 kg/m and a Pois-
sons ratio of 0.3 is assumed. No damping is considered.
A full-finite element model consisting of 100 elements
is constructed using Euler-Bernoulli beam theory. A
reduced order model of order 5 is employed. A step
voltage of 0.5 V is used. The output response of inter-
est is the peak displacement, which occurs at the tip
of the cantilever beam. A time step of 0.1 s was used
in the transient simulations. We consider random vari-
ations in two input parameters - the Young’s modulus
E and the thickness of the beam t, both with uniform
distribution. Note that these parameters affect the stiff-
ness as well as the mass matrices. We consider 10% and
20% variations in these parameters, and look at their
impact on the transient behavior of the switch. For ref-
erence, we use standard Monte Carlo (MC) simulations.
Thus we consider 10,000 realizations of the input pa-
rameters E and t, generate the full-finite element model
and the reduced order model for each sample and then
perform the transient simulation using the reduced or-
der model. Responses for all the samples are collected to
generate statistics such as mean and standard deviation.
For our approach (SC), we make use of level 4 Smolyak
algorithm consisting of only 29 grid points in the two
dimensional random parameter space for numerical in-
tegration. The results are summarized in Figure 1(b).
Figure 1(b) shows a comparison of the mean displace-
ment with error bars corresponding to one standard de-
viation obtained using Monte Carlo and our approach.
Very good agreement is observed. A numerical com-
parison is given in Table 1. It shows results for mean
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Figure 1: (a) Cantilever Switch (b) Stochastic tip displacement for 20% change in ‘E’ and ‘t’

Table 1: Cantilever switch (Maximum displacement (m)): Statistical change in Young’s modulus ‘E’ and thickness ‘t’
%change Monte Carlo Proposed method

mean std. dev mean std. dev
10% -1.32e-8 3.07e-9 -1.35e-8 2.88e-9
20% -1.44e-8 5.62e-9 -1.43e-8 5.79e-9

and standard deviation of displacement at the last time
step. It is clear that there is a good match between
results obtained using MC and our approach.

4 Summary

In summary, we have presented a systematic method-
ology for the model order reduction of finite element
models of MEMS structures exhibiting statistical vari-
ability in their material and geometry parameters. The
proposed methodology makes use of stochastic colloca-
tion and standard Krylov model order reduction tech-
niques to develop a stochastic reduced model of order
small enough to enable efficient quantitative assessment
under input uncertainty. Furthermore, the methodol-
ogy is independent of the MOR algorithm used. Thus,
it is seamlessly compatible with MOR toolkits used in
popular finite element solvers.
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