
     

 
Figure 1: Illustration showing a single nozzle of an 
inkjet printhead with an integrated heater at the 
orifice, and a thermal modulation pulse used to 
induce different sized drop formation and air flow 
size selection for printing. 
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ABSTRACT 

We present a numerical model for predicting drop 
generation for microfluidic printing applications. The 
model is based on a slender-jet approximation and involves 
the solution of coupled nonlinear partial differential 
equations for predicting jet instability and drop formation. 
The novelty of the model is that it predicts jet instability to 
breakup and beyond thereby enabling an analysis of the 
generation of multiple sequential drops including the details 
of satellite formation. The key advantages of the model are 
its ease of implementation and speed of computation, which 
is several orders of magnitude faster than CFD analysis.  
The model is demonstrated via application to high-speed 
continuous inkjet printing. 
 
Keywords: slender jet analysis, microdrop generation, 
continuous inkjet printing, microfluidic printing, microjet 
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1 INTRODUCTION 

     Research into the phenomenon of jet breakup and drop 
formation has increased dramatically over the last several 
years, due in part to rapid advances in microfluidic, 
biomedical, and nanoscale technologies [1,2]. Novel 
applications are proliferating, especially in fields that 
benefit from high-speed and low-cost patterned deposition 
of discrete droplets of micro- or nanoscale materials. 
Emerging applications in this field include printing 
functional materials for flexible electronics, 
microdispensing of biochemicals, printing biomaterials 
(e.g. cells, genetic material), and 3D rapid prototyping [1-
3].  
     In this presentation we introduce a numerical model for 
predicting the instability and breakup of viscous microjets 
of Newtonian fluid. We adopt a one-dimensional slender-jet 
approximation and obtain the equations of motion in the 
form of a system of coupled nonlinear partial differential 
equations (PDEs). We solve these equations using the 
method-of-lines (MOL), wherein the PDEs are transformed  
 
 

 
 
to a system of ODEs for the nodal values of the jet 
variables on a uniform staggered. The model accounts for 
arbitrary time-dependent perturbations of the free-surface, 
velocity and/or surface tension as boundary conditions at 
the nozzle orifice.  

We have used the model to design continuous inkjet 
printing systems. In such applications, liquid microjets are 
modulated in a controlled fashion to create steady streams 
of picoliter-sized droplets at frequency rates that can exceed 
500 kHz. In our lab, integrated microfluidic inkjet devices 
have been developed that utilize thermally modulated jets 
to enable color printing with unprecedented speed and 
versatility [4-10]. These devices consist of a pressurized 
reservoir that feeds a microfluidic nozzle manifold with 
hundreds of active orifices, each of which produces a 
continuous microjet of fluid. Controlled thermal modulation 

of each jet is achieved using CMOS/MEMS technology 
wherein a resistive heater element is integrated into the 
nozzle surrounding each orifice. To modulate a jet, a 
periodic voltage is applied to the heater, which causes a 
periodic diffusion of thermal energy from the heater into 
the fluid near the orifice (Fig. 1). Thus, the temperature of 
fluid, and hence the temperature dependent fluid properties, 
density, viscosity and surface tension, are modulated near 
the orifice. The dominant cause of jet instability is the 
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modulation of surface tension. To first order, the 
temperature dependence of   is given by 

0 0( ) ( )T T T     , where ( ) T  and 0  are the surface 

tension at temperatures T and 0T , respectively. The pulsed 
heating modulates   at a wavelength  = v0, where v0 is 
the jet velocity and  is the period of the heat pulse as 
shown in Fig. 1. The down-stream advection of thermal 
energy gives rise to a spatial variation (gradient) of surface 
tension along the jet.  This produces a shear stress at the 
free-surface, which is balanced by inertial forces in the 
fluid, thereby inducing a Marangoni flow towards regions 
higher surface tension (from warmer regions towards cooler 
regions). This causes a deformation of the free-surface 
(slight necking in the warmer regions and ballooning in the 
cooler regions) that ultimately leads to instability and drop 
formation [4-10]. The drop volume can be adjusted on 
demand by varying , i.e., 2

drop 0V vor  . Thus, longer 
pulses produce larger drops, shorter pulses produce smaller 
drops, and different sized drops can be produced from each 
orifice as desired. For printing applications two different 
sized drops are produced from each nozzle. The larger 
drops are projected onto a substrate to form an image while 
the smaller sized drops are deflected using air flow and 
recycled as shown in Fig. 1.   

The design of continuous inkjet printing devices 
typically involves time consuming CFD analysis which can 
take several days for a single simulation [5-7,10]. The 
model presented here reduces the computation time to less 
than an hour and is useful for parametric design of a device. 

2 EQUATIONS OF MOTION 

The equations governing the behavior of a non-
isothermal viscous microjet of an incompressible 
Newtonian fluid with surface tension  , viscosity , 

density  , specific heat pc , and thermal conductivity k , 
are as follows:  
 
Navier-Stokes: 
 

2 ,D p
Dt
        (1) 

where D
Dt t


   


. 

Thermal: 
 

2 .  p
DTc k T
Dt

  (2) 

 
Continuity: 
 

0. v   (3) 

 
Boundary Conditions: 
  
Thermal: 

 ( ).   ck n T h T T   (4) 
 

Normal Stress: 
 

 ( ) 2n n H    .  (5) 
 
Tangential Stress: 
 

( ) sn t t      .  (6) 
 

Kinematic (at jet surface): 
  

 ( , ) 0s
D r h z t
Dt

  .  (7) 

 
On axis (r = 0): 
 

0z
r

v Tv
r r

 
  
 

,  (8) 

 
where  , p , and T  are the velocity, pressure and 

temperature distributions along the microjet, rv  and zv  are 
the radial and axial velocity components, ( , )h z t  defines 

the free-surface, n and t  are unit vectors normal and 
tangential to the free-surface, s  is the gradient operator 

along the free-surface,   is the stress tensor, and ch  is the 
coefficient for thermal convection off the free-surface. The 
function H is given by 

''

'2 1/ 2 '2 3/ 2

1 1
2 (1 ) (1 )

hH
h h h

 
    

, (9) 

 
where '   zh h . Equations (1) - (8) need to be solved 
subject to appropriate boundary conditions.   

3 THE MODEL  

For slender microjets, equations (1)-(8) can be 
simplified using a perturbation expansion in r  for the 
unknown variables h , T and  , and retaining the lowest 
order terms [1]. This leads to the following 1-D slender jet 
equations:  

 
2

2

1 (2 ) 3 2  
  

                 
v v H vv h
t z z h z z h z

, (10) 
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Figure 2: Staggered computational grid: (a) infinite 
cylinder at pinch-off with periodic boundary 
conditions, (b) schematic of nozzle driven microjet. 
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In this approximation, there is thermal diffusion along the 
axis of the microjet and convection from its surface, but no 
radial thermal diffusion (1-D approximation).  

We solve the slender jet equations (10) - (12) (subject to 
appropriate boundary conditions) using the method of lines 
(MOL) [10]. The MOL is typically implemented using 
finite differences for the spatial derivatives and ordinary 
differential equations for the time derivatives. We use a 
uniform staggered computational grid for the finite 
differences where h , p , and T are evaluated on one set of 
nodes, and the velocity   is computed on interlaced nodes 
midway between the first set (Fig. 2). Thus, in the MOL 
approach, Eq. (11) reduces to a system of N ODEs of the 
form  
 

  1/ 2 1/ 2 1         1
2

i i i i i

i

h h v h v i N
t h z

   
   

 
 (13) 

 
where N is the number of nodes, and  1/2 1 / 2i i ih h h    

 1/2 1 / 2i i ih h h   .  A similar system of ODEs is obtained 
for both Eqs. (10) and (12), and therefore a total of number 
of approximately 3N ODEs  need to be solved for each 
simulation. Furthermore, one needs to apply a numerical 
upwind differencing scheme for the accurate solution of 
Eqs. (10) and (12).  
      We have implemented the MOL in MATLAB using the 
ODE solver routines for our numerical studies. We 
developed models to study both infinite cylinders of fluid 
with periodic modulation, and nozzle driven microjets 

wherein the modulation is applied in a time-wise fashion at 
the orifice, and then convected downstream. The models 
take into account temperature dependent fluid properties 
such as surface tension.  
 As noted above, our model can be used to predict jet 
instability to breakup and beyond allowing one to track the 
generation of multiple sequential drops including the details 
of satellite formation. To implement this feature, the 
program breaks a fluid ligament or filament into two 
separate domains when the minimum jet radius reaches a 
prescribed threshold.  Once the threshold is satisfied, the 
code segments the filament into two separate computational 
domains.  Each pass of the ODE solver evolves each 
ligament separately before proceeding to the next time-step.  
Because of the uniform grid used to discretize the model, 
every break will remove grid points from the main filament.  
Thus, it is necessary to add grid points to both sides of the 
break using linear interpolation.  
  Figure 3 shows the decision-making process used in 
the flow of the numerical code.  For each mass of fluid, 
there exists a separate computational domain and unique 
grid spacing.  For each ligament and time-step, we track the 
following: surface height h, velocity v, temperature T, 
number of grid points N, left endpoint position B, and 
ligament length L.  These are passed to the ODE solver 
where boundary conditions are applied and the equations of 
motion are applied for one time step.  Then, the program 
checks for a break or merge.  If one is found, the ODE 
solver is halted and the main program partitions or merges 
the data streams accordingly.  Flag variables are used to 
communicate back to the main program which ligament(s) 
is breaking or merging.  Then, the new stream is passed to 
the ODE solver to re-start the sequence.  All data is saved at 

       

  
Figure 3: Flow chart of algorithm for computing 
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Figure 4: Comparison of predicted and observed 
pinch-off and drop formation.  

every output time step of the ODE solver.  This way, we 
have access to the entire time history of the sequence and 
can plot or animate any event of our choosing.  

4 RESULTS 

We have used the model described above to analyze 
drop generation for the inkjet system shown in Fig. 1.  A 
sample prediction of drop formation along with 
corresponding experimental data is shown in Fig. 4.  A 
simulation of multiple drop formation showing satellite 
formation is shown in Figure 5.  This simulation was 
completed within 30 minutes on a workstation.   
 

Although the model is demonstrated here for continuous 
inkjet applications, it can be easily adapted for drop-on-
demand printing applications. 
 

5 CONCLUSIONS 

      We have presented a model for predicting the nonlinear 
deformation, pinch-off and drop generation of slender fluid 
cylinders and microjets. The model is easily programmed 
and well suited for parametric analysis. It has proven to be 
useful for the design and analysis of high-speed continuous 
inkjet printing devices.  
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Figure 5:  The formation of a satellite drop between 
primary drops is shown.  Time is increasing from 
bottom to top. 
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