
             

Figure 1: Magnetic particles: (a) TEM of Fe3O4 
nanoparticles, and (b) polymeric microparticles with 
embedded magnetic nanoparticles (Dynabeads from 
Dynal Biotech). 
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ABSTRACT 

We present methods and models for predicting the 
transport and trapping of magnetic particles in microfluidic 
systems with magnetic functionality. We discuss particle 
transport models that take into account the dominant 
magnetic and fluidic forces, as well as Brownian motion for 
sufficiently small particles. We use the transport models to 
study the performance of magnetically-biased and 
electrically actuated microsystems.   
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1  INTRODUCTION 

Magnetophoresis involves the manipulation of 
colloidal magnetic particles using an applied magnetic 
field. The interest in this phenomenon has grown 
dramatically in recent years, especially for microscale 
applications in fields such as microbiology and 
biotechnology where magnetic particles are used to 
selectively label a target biomaterial to facilitate analysis. 
This interest has led to the development of magnetophoretic 
microsystems for applications such as bioseparation and 
bioassays that involve the separation, sorting or 
immobilization of a target biomaterial [1]. The ability to 
magnetically label and manipulate biomaterials such as 
proteins, enzymes, nucleic acids and whole cells at the 
microscale enables rapid and highly specific detection and 
characterization of such materials.  The development of 
magnetophoretic microsystems is progressing rapidly due 
to advances in microfluidics, especially with regards to on-
chip integration of electronic, optical and magnetic 
functionality, as well as the development of biofunctional 
magnetic particles that can selectively label a target 
biomaterial.  

In their most basic form magnetophoretic 
microsystems consist of a microchannel and embedded 
elements that produce a magnetic field distribution within 
the microchannel. The elements can be either passive 
magnetic structures, or active voltage-driven conductors [2-
4]. In either case, the field generated by the elements gives 
rise to a magnetic force that acts to manipulate or trap 

particles as they flow through the microchannel.  
Magnetophoretic microsystems are well suited for 
bioapplications because they enable (i) fast reaction times, 
(ii) efficient coupling between the applied field and 
magnetically labeled material, (iii) the analysis and 
monitoring of small samples (pico/nano-liters), and (iv) the 
integration of  “micro total analysis systems” (µTAS).  

The development of magnetophoretic microsystems 
requires substantial upfront modeling in order to assess 
design feasibility, and to optimize performance prior to 
fabrication. Methods for modeling such devices include 
coupled magnetic/fluidic numerical analysis as well as 
analytical techniques if the devices have relatively simple 
flow geometries and magnetic structures. In this 
presentation we discuss methods and models for predicting 
the transport and trapping of magnetic particles in 
magnetophoretic microsystems. We discuss two different 
transport models: a classical Newtonian model for 
predicting the motion of individual particles, and a drift-
diffusion model for predicting the behavior of a 
concentration of nanoparticles, which accounts for the 
effects of Brownian motion. We also describe a 
magnetization model for predicting the magnetic response 
of a particle in an external field that takes into account 
saturation. This model is needed to compute the force on 
the particle. We use the transport models to study and 
compare magnetically-biased and electrically actuated 
(current driven) microsystems.  
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 2   PARTICE TRANSPORT 

Particle transport in a magnetophoretic microsystem is 
governed by various factors including (a) the magnetic 
force due to all field sources, (b) the fluidic drag force , (c) 
inertia, (d) gravity, (e) buoyancy, (f) Brownian motion (g) 
particle/fluid interactions (perturbations to the flow field), 
and (h) interparticle effects such as (i) magnetic dipole 
interactions, (ii) electric double-layer interactions, and (iii) 
van der Walls force [2-4]. We consider applications 
involving submicron particles in a dilute suspension where 
interparticle effects are negligible, and the magnetic and 
viscous forces are dominant. We present two different 
models for predicting particle transport in such systems, 
each governing a different regime of transport (Fig. 2). In 
the first model, we neglect Brownian motion and use 
classical Newtonian physics to predict the motion of 
individual particles, submicron-sized or larger. In the 
second model, we account for Brownian motion by solving 
a drift-diffusion equation for the behavior of a 
concentration of non-interacting magnetic nanoparticles.   

2.1 Newtonian Transport 

We consider the motion of a spherical magnetic 
particle in a viscous carrier fluid under the influence of an 
applied field. We restrict our attention to slow flow regimes 
where the magnetic and viscous drag forces are dominant, 
and we neglect Brownian motion. The particle has a 
density

pρ , radius
pR , volume 

p
3
p

4
V

3
R= π , and mass 

p p pm Vρ= . We use classical Newtonian dynamics to study 
particle motion,  

          
p

p m f g

d
m

dt
= + +

v
F F F ,          (1) 

where pv  is the velocity of the particle, and mF , fF , and 

gF are the magnetic, fluidic, and gravitational forces, 
respectively.  

We model the magnetic force using an “effective” 
dipole moment approach wherein the magnetized particle is 
replaced by an “equivalent” point dipole [2]. The magnetic 
force on the dipole (and hence on the particle) is given by,  

  ( )m p,eff afµ= • ∇F m H ,  (2) 

where fµ  is the permeability of the transport fluid, p,effm  

is the “effective” dipole moment of the particle, and aH  is 
the applied magnetic field intensity at the center of the 
particle, were the equivalent point dipole is located. Thus, 
to predict the magnetic force we need (i) a model for the 
magnetic response of the particle, from which we obtain 

p,effm , and (ii) an expression for the applied field. A model 

has been developed for p,effm that takes into account 
magnetic saturation of the particle [2]. Specifically, 
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spM  is the saturation magnetization of the particle and 

a aH = H . Analytical expressions for the field distributions 
of common magnetic sources (e.g., rectangular magnetic 
structures and current carrying conductors) can be found in 
the literature [2-4].  

The fluidic force is obtained using Stokes’ law for the 
viscous drag on a sphere,  
                                  pf hyd,p f6 R ( ),πη= −F v - v                (4) 

where hyd,pR  is the effective hydrodynamic radius of the 

particle,  and η  and fv  are the viscosity and the velocity 

of the fluid, respectively. It is important to note that hyd,pR  
is greater than the physical radius of the particle as surface-
bound materials contribute to the viscous drag.   

The gravitational force takes into account buoyancy and 
is given by  

 g p p f
F V ( )gρ ρ= − -  (5) 

  
where pρ  and fρ  are the densities of the particle and fluid, 

respectively, and 2g 9.8 m/s=  is the acceleration due to 

gravity.  The inertial term p

p

d
m

dt

v
 in Eq. (1) is often 

 
 

Figure 2: Magnetic particle transport models. 
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negligible. If we substitute Eq. (4) into Eq. (1) and ignore 
this term we obtain   

 ( )f m g

pdx

dt
γ= + +v F F , (6) 

where 
,p1 / (6 R )hydγ πη=  is the mobility of the particle. We 

use Eqs. (1) or  (6) to predict the motion of a biofunctional 
particle given appropriate initial conditions. Oftentimes, the 
gravitational force gF  is also negligible, which further 
simplifies the analysis. 

2.2 Drift-Diffusion Transport 

As noted above, Eq. (1) does not take into account 
Brownian motion, which can influence particle motion 
when the particle diameter pD  is sufficiently small. We 
estimate this diameter using the following criterion [3]  

 
pF D Tk≤ , (7) 

where F  is the magnitude of the applied force acting on 
the particle. This condition implies that Brownian motion 
needs to be taken into account when the energy exerted by 
the applied force in moving the particle a distance equal to 
its diameter is less than or comparable to thermal energy 
kT.  In order to apply Eq. (7), one needs to estimate F . If a 
field source is specified, and the magnetic force is the 
dominant force, then one can estimate F  for a given 
particle over the region of interest. This can be used to 
estimate the critical particle diameter ,c pD  below which 
one solves a drift-diffusion equation for the particle volume 
concentration c , rather than the Newtonian equation for the 
trajectory of a single particle. Specifically, c  is governed 
by the following equation [2], 

  0c
t

∂
+∇• =

∂
J , (8) 

where D A= +J J J  is the total flux of particles, which 

includes a contribution D D c= − ∇J  due to diffusion, and a 

contribution A c=J U  due to the drift of the particles under 
the influence of applied forces. The diffusion coefficient 
D  is given by the Nernst-Einstein relation D kTγ= .  The 

drift velocity U  in AJ  is obtained in the limit of negligible 

inertia as in Eq. (6), i.e. γ=U F , where f

m g
γ

= + +
v

F F F . 

Note that if the Stokes’ drag is the only force, then f=U v .   
 
 
 
 

3  MAGETOPHORETIC MICROSYSTEMS 

We use the transport models to study and compare 
passive (magnetically-biased) and active (voltage activated) 
microsystems. We study idealized systems. The passive 
microsystem, shown in Fig. 3, consists of an array of 
integrated soft-magnetic (permalloy) elements embedded in 
a nonmagnetic substrate beneath a microfluidic channel. A 
bias field of 0.5 T is used to magnetize/saturate the 
elements. A hypothetical separation sequence for this 
system is depicted in a cross-sectional view in Fig. 3(IV).   
The active microsystem, shown in Fig. 4, consists of a 
parallel array of rectangular conductive elements embedded 
beneath a microfluidic channel. The dimensions of the 
microchannel and the elements are the same in both 
microsystems.  Specifically, the microchannel is 120µm 
high, and each element is 100 µm wide and 50 µm high. 
The elements are spaced 100 µm apart edge-to-edge. Each 
conductive element carries a current of  I = 450 mA, which 
corresponds to a current density of 7 2J 9 10  A/m .= ×  The  
direction of current alternates from conductor to conductor.  

We compute the magnetic force on a 100 nm Fe3O4 
particle ( pR = 50 nm, 5M 4.78 10  A/msp = × ) in the  
microchannel above an array of three elements.  

   
Figure 3: Magnetically-biased microsystem [2]: (I) 
microsystem with bias field structure, (II) cross section 
showing microchannel, (III) geometry/reference frame, 
and (IV) cross-section of microsystem illustrating 
bioseparation sequence: (a) magnetic particles with 
surface-bound antibodies enter the microchannel with 
the bias field applied and the elements magnetized, (b) 
magnetized elements capture the particles, (c) target 
antigens are introduced into the microchannel, (d) target 
antigens become immobilized on  captured magnetic 
particles, (e) the bias field is removed and the magnetic 
elements revert to an unmagnetized state releasing the 
separated material for further processing.     
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Figure 4: Active microsystem [3]: (A) perspective 
view with reference frame, (B) cross-section 
illustrating bioseparation sequence. 

The force components mxF  and myF  for the active and 
passive elements are shown in Figs. 5 and 6, respectively. 
These are computed over the dotted rectangular region 
show in Figs. 5c and 6c, which extends from 20 µm to 100 
µm above the elements, and from -100 µm to the left of the 
array to + 100 µm  to the right of the array. Note that the 
magnetized elements produce pico-Newton forces, but the 
active elements produce only sub-femto-Newton forces. 
Moreover, while the force profiles of mxF are similar, the 

profiles for myF , which acts to trap the particles, are 
different., i.e. this force can be attractive or repulsive for 
the passive elements with a bias field, but it is strictly 
attractive for the conductive elements.  Typical predicted 
trajectories of the particles in the passive microsystem are 
shown in Fig. 7. 

4  CONCLUSIONS 

The development of microfluidic devices with 
magnetic functionality is in its infancy and growing rapidly, 

especially for bioapplications. Magnetophoretic  
microsystems utilize either passive or active force 
generation. Passive systems can provide a much stronger 
magnetic force than voltage-driven systems, and are more 
appropriate for nanoparticle transport. Active systems 
enable more control of the force and are more appropriate 
for applications that use larger (micron-sized) particles 
(beads).   
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Figure 6: Magnetic force across the microchannel 
above three magnetized elements: (a) surface plot of  
Fmx, (b) surface plot of  Fmy., (c) area (dotted line) over 
which the magnetic force is computed.  

       
Figure 5: Magnetic force across the microchannel 
above three conductors: (a) surface plot of  Fmx, (b) 
surface plot of  Fmy., (c) area (dotted line) over which 
the magnetic force is computed. 

  
Figure 7: Trajectories of nanoparticles. 
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