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ABSTRACT 

 
Recently, devices have been developed which use 

Carbon Nanotubes (CNTs) as torsional spring elements [1]. 
In order to define the range of applicability of CNTs in such 
devices, it is important to fully understand their torsional 
response, and to investigate failure modes such as the 
torsional buckling limit. Currently available continuum 
models are inaccurate as they are unable to account for the 
size effects that inevitably exist in such devices. In this 
work, a modified nonlocal continuum shell model for the 
torsional buckling of CNTs is proposed. This is done 
through modifying classical continuum models by 
incorporating basic concepts from nonlocal elasticity. 
Furthermore, molecular dynamics (MD) simulations are 
performed on a range of Zigzag and Armchair nanotubes 
with different diameters. It is easily seen that compared to 
classical models, the modified nonlocal model provides a 
much better fit to MD simulation results. Values of the 
nonlocal constants are calculated as 0.6 and 0.8 for Zigzag 
and Armchair CNTs respectively. 
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1 INTRODUCTION 
 
Carbon nanotubes (CNTs) have been the subject of 

ongoing research. These interesting nano-structures exhibit 
superior mechanical, electrical, thermal, magnetic and 
optical properties, and could provide the means for 
development of novel devices at the nano-scale. Ever since 
their discovery, much work has been done on the 
characterization and modeling of CNT properties, ranging 
from experimental observations to numerical simulations. 
Among the different approaches, continuum modeling is of 
special interest in defining the mechanical properties of 
CNTs. Continuum models are simple and efficient, 
however, in their classical sense, they are unable to account 
for the size effects that arise due to the discrete nature of 
matter at the nano-scale. To overcome such problems, 
modified continuum models have been proposed. One such 
model is based on the non-local elasticity theory proposed 
by Eringen [2] which has recently been successfully used to 

show size effects in nano-scale structures [3]. Using the 
same approach, in this paper, a modified nonlocal 
continuum shell model for the torsional buckling of carbon 
nanotubes is proposed to account for the size effects and 
provide an efficient and accurate method for the prediction 
of CNT torsional properties. The proposed non-local shell 
model is validated through comparison with results from 
molecular dynamics simulations and consistent values for 
the shell thickness and non-local constants of zigzag and 
armchair nanotubes are determined. 

 
2 NON-LOCAL CONTINUUM SHELL 

MODEL 
 
In this section, the basic concepts of non-local elasticity 

as proposed by Eringen in the 1970’s are briefly presented. 
These basic equations are used to develop a non-local shell 
model to predict the buckling torque of single-walled 
carbon nanotubes (SWCNTs). 

 
 

2.1 Non-local Theory of Elasticity 

This theory states that the stress at a reference point X in 
a body depends not only on the strain at point X, but also on 
the strains at all other points X′ in the body [2]. The basic 
equations of the non-local elasticity theory are; 
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where tkl, ρ, f, ul are the stress tensor, mass density, body 
force density and the displacement vector at x respectively. 
σkl(x′)  is the classical stress tensor at x′ which is related to 
the linear strain tensor ekl(x′) at point x′ through the lame 
constants λ and μ. The kernel function α(|x′- x|,τ) is the 
nonlocal modulus and |x′- x| is the Euclidean distance 
between points x′ and x,  τ=e0d/l where d is an internal 

NSTI-Nanotech 2009, www.nsti.org, ISBN 978-1-4398-1784-1 Vol. 3, 2009 331



characteristic length of the system (such as the carbon-
carbon bond length), l is an external characteristic length 
(such as the CNT radius or the CNT length) and e0 
represents Eringen’s nonlocal constant which has to be 
determined for each material independently.  

For a special class of physically admissible kernel, the 
above integro-partial differential equations of non-local 
elasticity can be reduced to singular partial differential 
equations. In the case of homogenous, isotropic elastic 
bodies the above equations reduce to: 

 
      (2) 

 
where C0 is the elastic stiffness tensor of classical (local) 
isotropic elasticity, σ is the nonlocal stress tensor, ε is the 
strain tensor and ‘:’ denotes the inner product of tensors [4].  

 
2.2 Modified Timoshenko Continuum Shell  
Model 

In this approach a CNT is modeled as a thin cylindrical 
shell with thickness h and radius a. A cylindrical coordinate 
system (r, θ, x) is used with the x-axis along the centre of 
the cylinder and r and θ corresponding to the radial and 
circumferential directions, respectively. The displacements 
in the axial, circumferential and radial directions of the 
shell denoted by u, v and w respectively are functions of 
only x and θ.  Note that these are small displacements 
measured from the twisted equilibrium state of the shell. 
For the case of torsional buckling, the non-zero strains can 
be expressed in terms of displacements as [5]; 
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Based on equation (2), the nonlocal form of Hooke’s 

law for the stress-strain relations in a cylindrical coordinate 
system can be expressed in the following form; 
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The above stress-strain relations can be substituted into 

the equilibrium equations proposed by Timoshenko [5] to 
find the modified governing differential equations for the 

torsional buckling of a cylindrical shell.  The buckling 
mode-shape is assumed to be of the following form; 
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where m is the number of half waves in the axial direction; 
and n is the number of waves in the circumferential 
direction. Substitution of equation (5) in the modified 
governing differential equations and the solution of the 
resulting eigenvalue problem yields the following solution 
for the non-dimensional form of the non-local buckling 
torque of a cylindrical shell;  
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For comparison, the non-dimensional form of the 

buckling torque corresponding to the classical thin shell 
model based on ideal elasticity is; 
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The results of equations (6) and (7) are based on the 

following critical buckling wavelength (λcr) given by 
Timoshenko and Gere [4];  
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2.3 Comparison of Classical and Nonlocal 
Models for Buckling Torque 

 
  It is clear from equations (6) and (7) the former is size-

dependent due to the presence of the shell radius in the 
denominator. Thus, the non-local model provides a method 
to bring size effects into account when calculating the 
buckling torque. Looking at equation (8), the ratio of the 
classical to non-local critical torques increases with 
decreasing values of the nanotube radius and the number of 
waves in the circumferential direction of the buckled shape. 
This ratio is also significantly affected by the value of the 
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nonlocal constant e0 (Figure 1). Note that when e0=0, the 
ratio equals to one and obviously the non-local model result 
reduces to the classical solution.  
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Figure 1: Ratio of the classical to nonlocal buckling torque 
for three different values of the nonlocal constant. 

 
 It is seen from Figure 1 that for CNTs with radii 

smaller than 0.7 nm, classical shell models can substantially 
overestimate the buckling torque.  

 
3 DETERMINATION OF THE NON-

LOCAL CONSTANT  
 
It is interesting to compare the nonlocal models derived 

here with classical models to see if a substantial 
improvement is achieved in the prediction of CNT buckling 
torques. Ideally, it is best to compare both models with 
experimental results; however, currently no such 
experimental results for the buckling torque of SWCNTs 
have been reported. Thus, molecular dynamics is used to 
calculate the buckling torque of CNTs. 

 
3.1 MD Simulation of CNT Torsion 

The software package Nanohive1 [6], incorporated with 
the AIREBO potential field is used to perform quasi-static 
molecular dynamic simulations on a range of nanotubes in 
order to determine the equivalent continuum properties 
applicable to the current continuum shell models and assess 
their validity in CNT modeling. The Adaptive 
Intermolecular Reactive Empirical Bond Order (AIREBO) 
potential is an extension of the commonly used second 
generation REBO potential developed for solid carbon and 
hydrocarbon molecules. 

To determine the buckling state of a certain nanotube 
under torsion, the modeling is started from an initial non-
twisted configuration followed by uniform twists (φ) 
applied incrementally along the nanotube. The new atomic 
coordinates are subsequently used as the input to the MD 

simulator. MD is used to perform relaxation on the twisted 
CNT until equilibrium is reached and the potential energy 
of the system converges to a minimum value. For each 
nanotube, the above simulation is conducted at different 
values of twist / shear strain and it is seen that above a 
certain value of twist, which is identified as the critical 
twist for buckling (φcr), the nanotube collapses into a 
buckled shape when allowed to relax for a sufficient 
amount of time. The outputs of the MD simulations are then 
analyzed to find the CNT torsional properties such as the 
buckling torque, buckling strain and the surface shear 
modulus. MD simulations are performed on a range of 
zigzag and armchair nanotubes. The results obtained for 
zigzag nanotubes with different diameters are depicted in 
Table 1.  

 
Chiral Indices Diam.(Ǻ) G.h (GPa nm) Mcr (N.m) γcr 

(10,0) 7.75 136.15 6.53E-18 0.052
(12,0) 9.30 131.19 7.22E-18 0.041
(14,0) 10.8 127.28 7.67E-18 0.034
(16,0) 12.4 123.34 8.20E-18 0.029
(20,0) 15.5 116.00 9.00E-18 0.022

Table 1: MD simulation results for the torsional buckling of 
a number of zigzag CNTs with different diameters (γcr is 

the buckling shear strain). 

 
3.2 Non-local Constant 

A non-linear least squares optimization technique is 
used to fit the classical and nonlocal solutions to the MD 
simulation results. In the case of the classical solution, the 
thickness h is the optimization variable and for the case of 
the non-local solution, both the non-local constant e0 and 
the thickness h are the optimization variables. The results 
are shown in Table 2 and Figures 2 and 3.  

 
ARMCHAIR 

 h(Ǻ) e0 Residual Norm (nN2.nm2)
Classical 0.75 — 4.11 
Non-local 0.85 0.85 0.09 

ZIGZAG 
 h(Ǻ) e0 Residual Norm (nN2.nm2)

Classical 0.81 — 5.9 

Non-local 0.86 0.61 0.04 

Table 2: Values of non-local constant and thickness 
obtained by fitting of non-local and classical solutions to 

MD results for torsional buckling. 
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Figure 2: Comparison of critical buckling torque from classical solution with MD simulations using optimized values for 
thickness ; (a) Zigzag SWCNTs (10,0), (12,0), (14,0), (16,0), (20,0)  (b) Armchair SWCNTs (5,5), (6,6), (8,8), (10,10), (12,12) 
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Figure 3: Comparison of critical buckling torque from classical and modified non-local solutions with MD simulations using 
optimized values of thickness and non-local constant; (a) for a Zigzag SWCNTs (b) for Armchair SWCNTs.  

 
4 CONCLUSIONS 

 
 It is easily seen that compared to classical models, the 

modified nonlocal model provides a much better fit to MD 
simulation results (Figures 2&3). The classical models are 
unable to show the correct rate of change in buckling torque 
with the change in CNT radius. This is due to ignoring the 
existing size effects at these scales. Based on the obtained 
results, a global thickness of 0.085 nm for CNTs subject to 
torsion is proposed. Values of the nonlocal constants are 
calculated as 0.6 and 0.8 for Zigzag and Armchair CNTs 
respectively. Through comparison of classical and modified 
non-local models it is concluded that classical approaches 
can overestimate the critical buckling torque of CNTs by as 
much as 30 percent and this error becomes more significant 
for CNTs with smaller diameters. For CNTs with large 

diameters (several nanometers or more), size effects are 
insignificant and both the classical and nonlocal models 
predict the same values for the buckling torque. 
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