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ABSTRACT

We present a simplified model of mechanical behavior
of large cantilever arrays with discoupled rows in the
dynamic operating regime. Since the supporting bases
are assumed to be elastic, cross-talk effect between can-
tilevers is taken into account. The mathematical deriva-
tion combines a thin plate asymptotic theory and the
two-scale approximation theory, devoted to strongly het-
erogeneous periodic systems. The model is not stan-
dard, so we present some of its features. We explain
how each eigenmode is decomposed into a products of
a base mode with a cantilever mode. We explain the
method used for its discretization, and report results
of its numerical validation with full three-dimensional
Finite Element simulations.

1 INTRODUCTION

Cantilever arrays are used in a variety of application
including Atomic Force Microscope arrays, for instance
the Millipede from IBM dedicated to data storage, see
in [2]. Modeling of large cantilever arrays is little de-
veloped. However, their direct numerical simulation,
based on classical methods like Finite Element Methods,
is prohibitive for today’s computers, at least in a time
compatible with designer time scale. The B. Bamieh’s
group has published a cantilever array model, see [5]
among other papers. It takes into account electrostatic
coupling, and its derivation is phenomenological. One
of the authors has published a model for an elastic AFM
Array in the static regime [4] and preliminary results for
the dynamic regime [3].

2 GEOMETRY OF THE PROBLEM

We consider a two-dimensional array of cantilevers, see
Fig 1 (a) for a two-dimensional view. It is comprised
of rectangle parallelepiped bases crossing the array in
which rectangle parallelepiped cantilevers are clamped.
Bases are supposed to be connected in the x1-direction
only, so that the system behaves as a set of discoupled

rows. Each of them is clamped at its ends. Concerning
the unclamped end of cantilevers, we report two cases,
one for free ends and one for ends equipped with rigid
tips, as in Atomic Force Microscopes. The whole array is

Figure 1: Two-dimensional view of (a) the full cantilever
array (b) a unit cell

a periodic repetition of a same cell, in the two directions
x1 and x2. We suppose that the number of columns and
of rows of the array are sufficiently large, namely larger
or equal to 10. Then, we introduce the small parameter
ε∗ equals to the inverse 1/N of the number of cantilevers
in a row. We underline the fact that the technique pre-
sented in the rest of the paper can be extended to other
geometries of cantilever arrays and even to other classes
of microsystem arrays.

3 TWO-SCALE APPROXIMATION

Each point of the three-dimensional space, with coordi-
nates x = (x1, x2, x3), is decomposed as x = xc + εy,
where xc represents the coordinates of the center of

the cell to which x belongs, ε =




ε∗ 0 0
0 ε∗ 0
0 0 1


, and

y = ε−1(x − xc) is the expanded relative position of x
with respect to xc. Points with coordinates y vary in the
so-called reference cell, see the two-dimensional view on
Fig. 1 (b), that is obtained through a translation and
the dilation ε−1 of any current cell in the array.

We consider the distributed field u(x), of elastic deflec-
tions in the array, and we introduce its two-scale trans-
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form,
ûε(x̃, y) = u(xc + εy),

for any x = xc + εy and x̃ = (x1, x2). By construction,
the two-scale transform is constant, with respect to its
first variable x̃, over each cell. Since it depends on the
ratio ε∗, then it may be approximated by the asymptotic
field, denoted by u0, obtained for large number of cells
(in both x1 and x2-directions) or equivalently when ε∗

approaches (mathematically) 0:

ûε = u0 + O(ε∗)

where O(ε∗) tends to zero when ε∗ vanishes. The ap-
proximation u0 is called the two-scale approximation of
u. We mention that, as a consequence of the asymp-
totic process, the partial function x̃ 7→ u0(x̃, .) may be
continuous instead of being piecewise constant.

Now, we consider that the field of elastic deflections u is
a solution of the Love-Kirchhoff thin elastic plate equa-
tion in the whole mechanical structure, including bases
and cantilevers. Furthermore, we assume that the ratio
of cantilever thickness hC to base thickness hB is very
small, namely

hC

hB
≈ ε∗4/3. (1)

This assumption is formulated so that the ratio of can-
tilever stiffness to base stiffness be very small, namely of
the order of ε∗4. The asymptotic analysis when ε∗ van-
ishes shows that u0 does not depend on the cell variable
y in bases and so depends only on the spatial variable
x̃.

Next, we remark that u0(x̃, y) is a two-scale field, and
therefore cannot be directly used as an approximation
of the field u(x) in the actual array of cantilevers. So,
an inverse two-scale transform is to be applied to u0.
However, we remark that x̃ 7→ u0(x̃, y) is continuous,
and so u0 does not belong to the range of the two-
scale transform operator and it has no preimage. Hence
we introduce an approximated inverse of the two-scale
transform, v(x̃, y) 7→ v(x), in the sense that for any suf-
ficiently regular one-scale function u(x) and two-scale
function v(x̃, y),

û = u + O(ε∗) and v̂ = v + O(ε∗).

It turns out that v(x) is a mean over the cell including
x centered at xc with respect to x̃ = (x1, x2) when x
belongs to a cantilever v(x) =

〈
v(., ε−1(x− xc))

〉
x̃

, and
with respect to x2 when x belongs to a base v(x) =〈
v(., ε−1(x− xc))

〉
x2

. In total, we retain u0 as an ap-
proximation of u in the actual physical system. Note
that for the model in dynamics, the deflection u(t, x) is
a time-space function. In our analysis we do not intro-
duce a two-scale transform in time, so the time variable
t acts as a simple parameter.

4 MODEL DESCRIPTION

Now, we describe the model satisfied by the two-scale
approximation u0(t, x̃, y) of u(t, x). Remark that as the
deflection u in the Kirchhoff-Love model is independent
of x3, thus u0 is independent of y3. For further simplic-
ity, we neglect cantilever torsion effect i.e. the variations
of y1 7→ u0(t, x̃, y). Thus, cantilever motion is governed
by a classical Euler-Bernoulli beam equation, in the mi-
croscopic variable y2,

mC∂ttu
0 + rC∂4

y2...y2
u0 = fC

with rC = ε∗4ECIC , where mC is a linear mass, EC

the cantilever elastic modulus, IC the second moment
of cantilever section, and fC a load per unit length in
the cantilever. This model represents the motion of an
infinite number of cantilevers parameterized by all x̃ =
(x1, x2).

Bases are also governed by an Euler-Bernoulli equa-
tion, in the macroscopic variable x1, where part of loads
comes from the continuous distributions of cantilever
shear forces,

mB∂ttu
0 + rB∂4

x1...x1
u0 = −dB∂3

y2...y2
u0 + fB

with rB = EBIB , where mB , EB , IB , dB and fB are
a linear mass, the base elastic modulus, the second mo-
ment of section of the base, a cantilever-base coupling
coefficient and the load per unit length in the base.

In the model, cantilevers appear as clamped in bases.
So at base-cantilever junctions,

u0
|cantilever = u0

|base and (∂y2u
0)|cantilever = 0, (2)

because ∂y2u
0 = 0 in bases. Equations of free ends are

∂2
y2y2

u0 = ∂3
y2y2y2

u0 = 0, (3)

and those of ends equipped with a rigid part (usually a
tip in Atomic Force Microscopes) are

JR∂tt

(
u0

∂y2u
0

)
+ εrC

( −∂3
y2y2y2

u0

∂2
y2y2

u0

)

=
(

fR
3

FR
3 + FR

2

)

at junctions between elastic parts and rigid parts. Here,
JR is a matrix of moments of the rigid part about the
junction-plane, fR

3 is a load in the y3 direction, FR
3 is a

first moment of loads about the junction-plane, and FR
2

the first moment of loads in the y2 direction about the
beam neutral plane. Finally, the base clamping condi-
tions are

u0 = ∂x1u
0 = 0. (4)
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The loads fC , fB and fR in the model are asymptotic
loads which are generally not defined from the physical
problem. In practical computations, they are replaced
by the two-scale transforms f̂C , f̂B and f̂R. To be com-
plete, we mention that rows of cantilevers are discou-
pled, this is why x2 plays only the role of a parameter.

5 STRUCTURE OF EIGENMODES

There is an infinite number of eigenvalues λA and eigen-
vectors ϕA(x1, y2) associated to the model. For conve-
nience, we parameterize them by two independent in-
dices i and j, both varying in the infinite countable set
N. The first index i refers to the infinite set of eigenval-
ues λB

i and eigenvectors ϕB
i (x1) of the Euler-Bernoulli

beam equation associated to a base. The eigenvalues
(λB

i )i∈N constitutes a sequence of positive number in-
creasing towards infinity. At each such eigenvalue cor-
responds another eigenvalue problem associated to can-
tilevers, which has also a countable infinity of solutions
denoted by λC

ij and ϕC
ij(y2). The index i of λB

i being
fixed, the sequence (λC

ij)j∈N is a positive sequence in-
creasing towards infinity. In the other side, for fixed j
and large λB

i , i.e. large i, the sequence (λC
ij , ϕ

C
ij)i∈N con-

verges to an eigenelement of the clamped-free cantilever
model. Finally, we have proved that the eigenvalues
λA

ij of the model are proportional to λC
ij , and that each

eigenvector ϕA
ij(x1, y2) is the product of a mode in a base

by a mode in a cantilever ϕB
i (x1)ϕC

ij(y2).

6 MODEL VALIDATION

We report observations made on eigenmode computa-
tions. We consider a one-dimensional silicon array of
N cantilevers (N = 10, 15 or 20), with base dimen-
sions 500µm × 16.7µm × 10µm, and cantilever dimen-
sions 41.7µm × 12.5µm × 1.25µm, see Figure 2 for the
two possible geometries, with or without tips. We have

Figure 2: Cantilever Array with tips (a) and without
tips (b)

carried out our numerical study on both cases, but we
limit the following comparisons to cantilevers without
tips, because configuration including tips yields compa-
rable results.
We restrict our attention to a finite number nB of eigen-
values λB

i in the base. Computing the eigenvalues λA,
we observe that they are grouped in bunches of size nB
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Figure 3: Eigenmode Density Distributions for Finite
Element Model and for the Two-Scale Model

accumulated around a clamped-free cantilever eigenval-
ues. A number of other eigenvalues are isolated far from
the bunches. It is remarkable that the eigenelements in a
same bunch share a same cantilever mode shape, (close
to a clamped-free cantilever mode) even if they corre-
spond to different indices j. This is why, these modes
will be called ”cantilever modes”. Isolated eigenelements
share also a common cantilever shape, which looks like a
first clamped-free cantilever mode shape excepted that
the clamped side is shifted far from zero. The induced
global mode ϕA is then dominated by base deformations
and therefore will be called ”base modes”. Densities of
square root of eigenvalues are reported in the sub-figures
2, 4 and 61 of Fig. 3 for nB = 10, 15 and 20 respectively.
These figures show three bunches with size nB and iso-
lated modes that remain unchanged.

We discuss the comparison with the modal structure
of the three-dimensional linear elasticity system for the
cantilever array discretized by a standard Finite Ele-
ment Method. The eigenvalues of the three-dimensional
elasticity equations constitute also an increasing positive
sequence that accumulate at infinity. As for the two-
scale model, its density distribution exhibits a number
of concentration points and also some isolated values.
Here bunch sizes equal the number N of cantilevers,
see sub-figures 1, 3 and 5 in Fig. 3 representing eigen-
mode distributions for N = 10, 15 and 20. Extrapo-
lating this observation shows that when the number of
cantilevers increases to infinity bunch size increases pro-
portionally. Since the two-scale model is an approx-
imation in the sense of an infinitely large number of
cantilevers, this explains why the two-scale model spec-
trum exhibit mode concentration with infinite number
of elements. This remark provides guidelines for op-

1Sub-figures are counted from top to down.
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Figure 4: (a) Superimposed Eigenmode Distributions
of the simple Two-Scale Model with the full three-
dimensional Finite Element Model (b) Errors in loga-
rithmic scale

erating mode selection in the two-scale model. In or-
der to determine an approximation of the spectrum for
an N -cantilevers array, we suggest to operate a trun-
cation in the mode list so that to retain a simple in-
finity of eigenvalues (λA

ij)i=1,..,N and j∈N. We stress the
fact that N−eigenvalue bunches are generally not cor-
responding to a single column of the truncated matrix
λA

ij . This comes from the base mode distribution in this
list. When considered in increasing order, base modes
are located in consecutive lines of the matrix λA but
not necessary in a same column. We remark that a
number of eigenvalues in the Finite Element model spec-
trum have not their counterpart in the two-scale model
spectrum. The missing elements correspond to physi-
cal effects not taken into account in the Euler-Bernoulli
models for bases and cantilevers.

The next step in the discussion is to compare the eigen-
modes and especially those belonging to bunches of eigen-
values. To compare an eigenvector from the two-scale
model with an eigenvector of the elasticity system, we
use the Modal Assurance Criterion, see [1] which is equal
to one when the shapes are identical and to zero when
they are orthogonal, see Fig. 5. This test has been
applied on transverse displacement only and a further
selection has been developed so that to eliminate modes
corresponding to physical effects not modeled by the
Euler-Bernoulli models. Following this procedure, mode
pairing is achieved successfully. In Figure 4 (a) paired
eigenvalues have been represented and the correspond-
ing relative errors are plotted on Figure 4 (b). Note that
errors are far from being uniform among eigenvalues. In
fact, the main error source resides in a poor precision of
the Euler-Bernoulli model for representing base defor-
mations in few particular cases. Indeed, a careful obser-

Figure 5: MAC matrix between two-scale model modes
and FEM modes

vation of Finite Element modes shows that base torsion
is predominant for some modes. This is especially true
for the first mode of the first cantilever mode bunch.

7 CONCLUSIONS

A cantilever array model in dynamic regime have been
derived based on a theory of strongly heterogeneous ho-
mogenization where the cantilevers play the role of soft
parts. We conclude to a globally good agreement with
the three-dimensional elasticity model based on eigen-
value and eigenvector comparisons.
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