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ABSTRACT 

 
An analytical model that captures the essence of 

physical processes in a CNTFET’s is presented.  The model 
covers seamlessly the whole range of transport from drift-
diffusion to ballistic. It has been clarified that the intrinsic 
speed of CNT’s is governed by the transit time of electrons.  
Although the transit time is more dependent on the 
saturation velocity than on the weak-field mobility, the 
feature of high-electron mobility is beneficial in the sense 
that the drift velocity is maintained always closer to the 
saturation velocity, at least on the drain end of the transistor 
where electric field is necessarily high and controls the 
saturation current. The results obtained are applied to the 
modeling of the current-voltage characteristic of a carbon 
nanotube field effect transistor. The channel-length 
modulation is shown to arise from drain velocity becoming 
closer to the ultimate saturation velocity as the drain 
voltage is increased. 
 

1 INTRODUCTION 
 

There is an intensive search and research for high-speed 
devices is an ongoing process.  Two important factors that 
determine the speed of a signal propagating through a 
conducting channel.  One is the transit-time or gate delay 
that depends on the length of the channel and the other is 
the wire delay that is due to finite RC time constants.  The 
two factors are intertwined as in each one the ultimate 
saturation of velocity plays a predominant role.  The higher 
mobility brings an electron closer to saturation as high 
electric field is encountered, saturation velocity remaining 
the same [Mohammad].  The reduction in conducting 
channel length of the device results in reduced transit-time-
delay and hence enhanced operational frequency.  There is 
no clear consensus on the interdependence of saturation 
velocity on low-field mobility that is scattering-limited.  In 
any solid state device, it is very clear that the band structure 
parameters, doping profiles (degenerate or nondegenerate), 
and ambient temperatures play a variety of roles in 
determining performance behavior.  The outcome that the 
higher mobility leads to higher saturation is not supported 
by experimental observations [1, 2]. This paper focuses on 
the process controlling the ultimate saturation.  It has been 
confirmed in a number of works that the low-field mobility 
is a function of quantum confinement [3, 4]. In the 
following, the fundamental processes that limit drift 
velocity are delineated. 

As devices are being scaled down in all dimensions, the 

curiosity towards ballistic nature of the carriers is elevated.  
Initially, it was in the work of Arora[1] that the possibility 
of ballistic nature of the transport in a very high electric 
field for a nondegenerate semiconductor was indicated.  In 
this article, the work of Arora is extended to embrace 
degenerate domain in the carbon nanotube where electrons 
have analog type classical spectrum only in one direction 
while the other two directions are quantum confined or 
digital in nature.  When only the lowest digitized quantum 
state is occupied (quantum limit), a carbon nanotube shows 
distinct one-dimensional character. 
 

2 DISTRIBUTION FUNCTION   
 

In one dimensional nanotube with diameter around 
nanometer (see Figure. 1), only one of the three Cartesian 
directions is much larger than the De - Broglie wavelength 
(Taken is x direction). Since the current is independent of 
band structure a MOSFET-like CNTFET in the quantum 
limit can be described by the same theory for 
semiconductor nanowires MOSFETs. For the Carbon 
nanotube near the k = 0 band structure is parabolic and the 
energy spectrum is analog-type only in x-direction. 
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Here EG is the band gap for ith sub bands and cca −  is 

the Carbon –Carbon band in the quantum limit of a 
nanotube and d is the diameter of the Carbon nanotube, and 
t=2.7 (eV) is the nearest neighbor C-C tight binding overlap 
energy [5, 6].In the y, z-direction where the length

DzyL λ<<, , the De - Broglie wavelength Dλ with a 
typical value of 10 nm.  kx is the momentum wave vector in 
the x-direction.  omm 05.0* =  [7]. 
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