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ABSTRACT 
 
Casimir forces originating from vacuum fluctuations of 

the electromagnetic fields [1] are of increasing importance 
in many scientific and technological areas. The 
manifestations of these long-range forces at the nanoscale 
have led to the need of better understanding of their 
contribution in relation to the stability of different physical 
systems as well as the operation of various technological 
components and devices [2]. In this work, we present 
mathematical methods to calculate the Casimir interaction 
in various infinitely long cylindrical nanostructures. We 
will consider a dielectric cylindrical layer with a finite 
thickness characterized with specific dielectric and 
magnetic properties and another system of perfectly 
conducting concentric cylindrical shells. We present 
analytical expressions and numerical calculations for 
various cases in terms of the radial dimension, curvature, 
and material composition of the studied systems. The 
results from this work can be used to understand long-range 
interactions in structures such, as carbon nanotubes and 
nanowires [3,4].  

 
Keywords: Casimir force, nanoscale, mathematical 
methods, carbon nanotubes. 
 

1 INTRODUCTION 
 

Long-range dispersion forces, such as van der Waals 
forces (between a pair of unpolarized atoms or molecules), 
Casimir-Polder forces (between an atom and a macroscopic 
object), and Casimir forces (between two macroscopic 
objects), originate from the vacuum fluctuations of the 
electromagnetic field [5]. They couple electrically neutral 
objects with no permanent electric and/or magnetic 
moments and are quantum mechanical in their physical 
nature. These long-range forces become especially 
important for systems integrated in nanotechnological 
devices, where deep understanding of the behavior of 
various miniaturized components plays a crucial role [2, 6].  

Processes, such as friction, adhesion, and ware, are 
directly related to the Casimir forces and they can be 
dominant at small scales. For example, Casimir force is 
found to be prominent in micro- and nanoelectromechanical 
systems (MEMS and NEMS) [2]. In such tiny devices, the 
Casimir force can cause mechanical components to stick to 
one another, resulting in permanent adhesion, an effect 
called stiction. This effect often results in the malfunction 
of MEMS and NEMS, causing them to behave erratically.   

Furthermore, structures and devices such as multiwall 
carbon nanotubes consisting of cylindrically wrapped 
graphene sheets have been shown to be stable due to long-
ranged forces [7]. Oscillating carbon nanotubes or 
buckyballs inside a stationary carbon nanotube have also 
been demonstrated to be related to such long-ranged forces 
[8-10].  

Therefore, qualitative and quantitative knowledge is 
needed in order to be able to understand and monitor such 
long-range forces in various systems. Different geometries, 
topologies or types of materials can influence the 
magnitude and sign of the Casimir force [5]. The purpose of 
this paper is to present a qualitative model of the 
importance of the cylindrical geometry curvature, number 
of layers and radial size in the Casimir interaction in 
cylindrical structures. This is achieved by considering 
theoretical and mathematical techniques in modeling the 
Casimir effect.  

Of the several theoretical methods that have been 
developed to calculate the Casimir effect in non-trivial 
geometries [5], the mode summation method will be of 
particular interest to us. This mode summation approach 
involves representing the Casimir energy as a sum of the 
zero-point energies of the electromagnetic excitations 
supported by the system. We investigate two specific 
systems using this method, a dielectric cylindrical layer 
with finite thickness and perfectly conducting concentric 
cylindrical shells. Our interest in such systems is motivated 
by the existence of cylindrical structures, such as double-
wall metallic and dielectric carbon nanotubes [3] and 
carbon multiwall nanotubes made out of metallic shells 
[11,12].  

The rest of the paper is organized as follows. In Section 
2 the methodology used is presented. In Sections 3 and 4 
the systems used and their corresponding results and 
discussions are given.  

 
2 MODE SUMMATION METHOD  

 
The mode summation method allows us to express 

the Casimir energy in a simple and elegant fashion as 
the sum of the ground state (zero-point) photon 
energies. One obtains these photon energies from the 

dispersion relation, 0)(}{ =χpf  where 222
zk−= εμωχ  

and {p} are the complete set of quantum numbers 
determined by the type of system under consideration.  
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Hereε and μ are the dielectric and magnetic functions 
respectively, ω

 
is the frequency and zk  is continuous 

corresponding to the wave vector along the infinite axial 
direction of the cylindrical system. For a cylindrical 
structure, ( )zkmnp ,,}{ =  where n is the order of Bessel 
functions that appear in the dispersion relations, m denotes 
the number of roots of 0)(}{ =χpf .  

The Casimir energy can then be expressed by the sum 
over all modes, as follows: 

 

( )∑ −=
}{

~
2 p

ppCE ωωh
                                             (1) 

 
The terms pω

 
are the eigenfrequencies satisfying 

)(}{ χpf while pω~  are the ones corresponding to the 

reference vacuum with no boundaries present. 

 
3 CASIMIR ENERGY OF A 

CYLINDRICAL LAYER  
  

3.1 Model and Calculations 

The first system that we consider is that of a dielectric 
cylindrical layer with an inner radius 1R , an outer radius 2R  
and an infinite axial direction (see Fig. 1). The dielectric 
layer has dielectric and magnetic functions ε  and μ  
respectively, and it is placed in an infinite medium of 
dielectric and magnetic functions mε  and mμ  respectively. 
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Figure 1: Cylindrical layer of finite thickness. 

 For this model we define the Casimir energy in the 
following form [3]:  
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The sums over n and m in Eq. (2) are both divergent. 

The divergence over m is removed by using the Residue’s 
theorem while that over n is regularized using the Riemann 

ζ -function procedure. The parameter s, specified as a 
complex number, enables us to employ the Riemann ζ -
function regularization procedure and the exact Casimir 
energy is retrieved by setting 1−→s . In order to facilitate 
the calculations for the Casimir energy we impose the 
condition 2−== cmmμεεμ . In other words, the speed of 
light c is taken to be constant across each interface.  

For this model, the dispersion relation can be separated 
into the pure magnetic (TE) and pure electric (TM) 
modes, TM

p
TE

pp fff }{}{}{ )( =χ . The Casimir energy then 
becomes of the form [3]:  
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Here we have used the relation 222
zk−= εμωχ  and 

made the substitution χIm=y . The dispersion relations 
TMTE

nf , provide us with our electromagnetic modes where 

)(, ∞TMTE
nf are the dispersion relations when there is no 

boundaries in the system and )(sΓ  is the gamma function. 
 
3.2 Results and Discussion 

The Casimir energy for the dielectric cylindrical layer, 
given by Eq. (3) is solved using analytical and numerical 
techniques [3] and various limiting cases in terms of the 
radial dimension, curvature, and material composition of 
the cylindrical layer are considered. Also, by introducing 

the parameter
m

m

εε
εε

ξ
+
−

= , it allows us to make calculations 

for practically important limiting cases such as a dielectric-
diamagnetic cylindrical layer as well as two concentric 
perfectly conducting thin shells.  

Fig. (2a) indicates that the energy is negative, and in the 
limit 1→α , where 12 / RR=α , the energy behaves 

as 3)1/(1|~| −αCE . Fig. (2a) and Fig (2b) show that in the 
limit ∞→2R , the system approaches the limit of a single 
perfectly conducting cylindrical shell [13] and 0→CE . 
The Casimir energy per unit area of a dielectric-
diamagnetic plate [14] in the limit of ∞→21, RR  when 

constRRd =−= 12  is also recovered.
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4 CASIMIR ENERGY OF PERFECTLY 
CONDUCTING CYLINDRICAL 

SHELLS 
 
4.1 Model and Calculations 
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The second system considered is that of N perfectly 

conducting, infinitely long, concentric cylindrical shells 
immersed in a medium. The radii of the shells are iR  
where i=1,2,…N. (see Fig. 3). 

In order to calculate the Casimir energy for the system 
of perfectly conducting cylindrical shells, one needs to 
remove the divergences present.  This is achieved by 
taking the difference between the energy of the system of 
concentric shells and the energy of the individual isolated 
cylindrical shells. In this way the Casimir energy is 
expressed in a more transparent way and the remaining 
divergences are cancelled out [4]. After doing the  

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
appropriate modifications, the Casimir energy becomes of 
the following form: 
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The dispersion relations here are given as 

),...,,( 21
, yiRyiRyiRf N
TMTE

n for N shells with χIm=y . 

)(,
, yiRf i

TMTE
in are the dispersion relations for a single 

cylindrical shell with radius iR  and )(,
, ∞if TMTE
in  are the 

dispersion relations with no boundaries present [4]. 
 
4.2 Results and Discussion 

To illustrate the behavior of the Casimir energy for 
multiple shells, we will consider the case N=3 shells. First 
case we consider is when the radii of the shells are varied 
in such a way as to keep the distance between them 
constant (see Fig. 4(a)). We find that in the limit of 

∞→321 ,, RRR  and constdd == 21 where 121 RRd −=  
and 232 RRd −= , the Casimir energy per unit area 

behaves as ( )3
2

3
1

2 720/1720/1 ddcEC +−≈ πh  
confirming a result obtained in Ref. [15]. 

Fig. 4(b) illustrates the case when the inner radius is 
kept constant, while the outer two are varied. As 2R  
increases, the Casimir energy becomes practically 
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Figure 2: Dimensionless Casimir energy per unit length for the cylindrical dielectric 
layer as a function of (a) – the ratio of the outer and inner radii R2/R1, (b) – the 

inner radius R1.

Figure 3: Infinitely long perfectly conducting 
and concentric cylindrical shells.  
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a constant with our system behaving more like a single 
cylindrical shell and two perfectly conducting plates. The 
final case considered consisted of keeping the two inner 
radii constant while the outer one, 3R , is varied (see Fig. 
4(c)). For the ∞→3R limit, the energy approaches that of 
two perfectly conducting cylindrical shells infinitely 
separated from a conducting parallel plate [4].  
 

5 CONCLUSION 
 
In this paper, we have investigated the zero-point 

energy for two different systems, the first one being a 
cylindrical layer with a finite thickness and the other one a 
system of N perfectly conducting, infinitely long 
cylindrical shells by making use of the mode summation 
method. We were able to successfully remove the 
divergences for both cases and obtained physically finite 
results for various interesting limits. For instance, we 
recovered the well-known Casimir formula for the energy 
per unit area of two parallel perfectly conducting plates [1] 
separated by a distance constRRd =−= 12 in the limit 
of ∞→21, RR , when we considered the model of 
cylindrical layer. For our second model, we analyzed 
various limits in the case of three shells, and found that our 
result agrees with Ref. [15] in the limit of ∞→321 ,, RRR  
and constdd == 21 where 121 RRd −=  and 232 RRd −= , 
in which case our system corresponds to three parallel 
plates. 

In regards to practical applications, the case of 
perfectly conducting concentric cylinders might be of 
particular interest as a qualitative model of the Casimir 
interactions in a multi-wall carbon nanotube system. More 
thorough and realistic analysis is necessary to describe the 
Casimir interaction in multi-wall carbon nanotubes, by 
taking into account realistic electromagnetic properties.  
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Figure 4: The dimensionless Casimir energy for the case of N=3 shells: (a) as a function of the inner 
radius R1; (b) as a function of the radius of the second shell R2; and (c) as a function of separation 

between the two outer shells. Here 121 / RR=α  and 232 / RR=α . 
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