
Quantum Fourier Transform Circuit Simulator 

Víctor H. Tellez*, Antonio Campero**, Cristina Iuga**, Gonzalo I. Duchen*** 
 

*Electrical Engineering Departament, **Chemical Departament, DCBI, Universidad 
Autonoma Metropolitana Iztapalapa, Av. San Rafael Atlixco 186, Col. Vicentina, 

Iztapalapa 09340 D.F. Mexico, email: vict@xanum.uam.mx 
***SEPI, ESIME Culhuacan, Av. Santa Ana 1000, Col. San Francisco Culhuacan, C.P. 

04430, D.F. 

ABSTRACT 
 

Quantum Fourier transform is of primary importance in 
many quantum algorithms. This paper presents the 
development of a Quantum Fourier Transform Circuit 
Simulator system that processes classical analog signals and 
presents the results of the processing data. The data is 
acquired by an analog to digital classical converter, on a 
classical computer. The data stored is processed by 
computer using an algorithm that executes a Quantum Fast 
Fourier Transform (QFT). 
 

1 INTRODUCTION 
 

In quantum mechanics, quantum information is physical 
information  that is held in the "state" of a quantum system. 
The most popular unit of quantum information is the qubit, 
a two-state quantum system. However, unlike classical 
digital states (which are discrete), a two-state quantum 
system can actually be in a superposition of the two states 
at any given time. A quantum bit, or qubit  is described by a 
state vector in a two-level quantum mechanical system 
which is formally equivalent to a two-dimensional vector 
space over the complex numbers.  

The Quantum Fourier transforms (QFT) plays essential 
roles in various quantum algorithms such as Shor’s 
algorithms [1, 2, 3] and hidden subgroup problems [2, 4, 5]. 
Inspired by the exponential speed-up of Shor’s polynomial 
algorithm for factorization [1], many people investigated 
the problem of efficient realization of QFT in a quantum 
computer [3, 6, 7, 8, and 9]. Up to now, many 
improvements have been made. In [6], Moore and Nilsson 
showed that QFT can be parallelized to linear depth in a 
quantum network, and upper bound of the circuit depth was 
obtained by Cleve and Watrous [7] for computing QFT 
with a fixed error. In reference [8] the actual time-cost for 
performing QFT in the quantum network was examined. 
Further, Blais [9] designed an optimized quantum network 
with respect to time-cost for QFT.  

The present work shows a sound processing system 
based QFT circuit simulator of such sounds. A minimum 
system based on QFT circuit simulator and acquisition was 
developed, using a classical computer and the QFT was 
made on Python compiler. The paper is organized as 

follows. After the introduction the acquisition system is 
described, followed by the methodology to processing the 
sound. Results and conclusions are presented. 

 
2 SYSTEM DESCRIPTION 

 
The analog to digital converter part is based on a 

68HC11 microcontroller minimum system; this processor 
that can perform the required memory, A/D conversion and 
transfer to Personal Computer. The data received from the 
Analog to Digital Converter is processing by a personal 
computer, using the Python compiler, which execute the 
QFT program and presents the results of the processing. 

 
3 METHODOLOGY 

 
The system requests a subject to emit a sound and it is 

recorded through the microphone; the program seeks for the 
suitable tone in order to be recognized as a valid signal. The 
capture algorithm is executed from the analog to digital 
converter, and then the processing algorithms are executed 
from the personal computer. 
 
3.1 The QFT modeling circuit 

The processing algorithm, is based on the QFT as an 
unitary operation on n qubits defined as follows 

yexF
n

n

y

ixy

n ∑
−

=

→
12

0

2/2

2
1: π    (1) 

where xy is a normal ``decimal'' multiplication of numbers x 
and y, which are represented by the quantum registers  

021 yyyy nn ⊗⊗⊗= −− L   (2) 

where  kx   and ky are individual qubits.  
Comparing this with the notation in the section about 

Simon Oracle, where yx •  meant 

 
11

221100

2
22

−− •+
+•+•+•=•

nn yx
yxyxyxyx L

 

NSTI-Nanotech 2008, www.nsti.org, ISBN 978-1-4200-8505-1 Vol. 3 39



There we treated x and y as arrays of bits rather than 
integer numbers. Of course in computing a single integer 
number is implemented as an array of bits, but the point is 
how you interpret this array, and so xy in the Fourier 
Transform formula is not the same as yx •  in the Simon 
Oracle formula. The former is an integer operation on two 
scalar numbers and the latter is a binary operation on two 
binary vectors. The former can be expressed in terms of a 
binary operation too, but it will not be yx • .  

Observe that once you know what F does to the basis 
vectors x , you can figure out what F does to any other 

vector. This other vector can be ( ) xxf∑ ∞ , which 
yields the following formula for Quantum Fourier 
Transform of function f:  

( ) ( ) ( )∑∑
−

=

−

=

=⎟
⎠

⎞
⎜
⎝

⎛ 1

0

1

0

N

x

N

x
xFxfxxfF  

( )∑ ∑−

=

−

=

=
1

0

1

0

/21 N

x

N

y

Nixy yexf
N

π   (3) 

( ) yexf
N

N

x

Nixy
N

y
∑∑
−

=

−

=

=
1

0

/2
1

0

1 π   (4) 

From this formula the yth component of F is   

( ) ( )∑
−

=

=
1

0

/21 N

x

Nixy
y exf

N
fF π    (5) 

which is beginning to look quite like a normal Discrete 
Fourier Transform. 
 
3.2 The QFT Circuit Simulator 

The QFT circuit simulator is development on Python 
compiler, on a personal computer running over Linux 
operating system. In order to implement the circuit that 
calculates the QFT:  

yexF
n

n

y

ixy

n ∑
−

=

→
12

0

2/2

2
1: π  (6) 

we shall deploy the trickery of the Fast Fourier Transform. 
Let us have a look at:  

nixye 2/2π  

This expression is periodic in xy and the period is 2n. The 
trick about the Fast Fourier Transform is that it only uses 

the terms of 
nixye 2/2π that correspond to the ``first circle'', 

i.e., the terms for which x y / 2n < 1. Let us evaluate then 
xy/2n while truncating very thing that would go onto the 
second and third circle:  

( )
( ) KL

L

=+++++

×+++++≡

−
−

−
−

1
1

3
3

2
210

1
1

3
3

2
210

2222

2222
2
1

2
n

n

n
nnn

yyyyy

xxxxxxy
 

Here we have decomposed x and y into their binary 
components, so that each of the xk and yk terms is either 0 or 
1.  

( ) ( ) LLL ++++++++++= −−
−

− 11
2

210
1

1
1

1
2

2100 2222222(
2
1

nn
n

nn xxxxyxxxxy

( ))2222 1
1

2
210

1
1

−
−

− +++++ n
n

n xxxxy LL  

( )
( )+++++

+++++=

−
−

−
−

1
2

3
2

2
101

1
1

2
2100

2222

222(
2
1

n
n

n
nn

xxxxy

xxxxy

L

L

( ) )22222 1
01

1
3

4
2

3
1

2
02

−
−

−
− +++++++ n

n
n

n xyxxxxy LL  

+⎟
⎠
⎞

⎜
⎝
⎛ +++++⎟

⎠
⎞

⎜
⎝
⎛ ++++= −

−−−
−

−− 22222222
2

3
2

2
1

1
0

1
1

2
2

1
10

0
n

nnn
n

nnn

xxxx
y

xxxx
y LL  

KLL =++⎟
⎠
⎞

⎜
⎝
⎛ +++++ −

−
−−− 22222

0
1

3
4

2
3

1
2

0
2

x
y

xxxx
y n

n
nnn  

There is a special notation, which covers the sums in the 
brackets: 

( )0
0

2
x

x
→ ,  ( )10

1
2
0

22
xxxx

→+ , 

 ( )K210
2

2
1

3
0

222
xxxxxx

→++   

Using this notation:  

( ) ( )

( ) ( )013102

210111002
xyxxxy

xxxyxxxyxy

nn

nnn

−−

−−

++

++≡

LK

KK
 (7) 

So now we can write our Quantum Fourier Transform 
thusly:  

yexF
n

n

y

ixy

n ∑
−

=

=
12

0

2/2

2
1 π

( ) ( )( ) ye
n

nn

y

xyxxxyi

n ∑
−

=

++ −−=
12

0

..2 011100

2
1 Kπ

( ) ( )∑
−

−−

=
−⊗⊗⊗=

1

011100

2

0
1

2
0

2

2
1 n

nn

y
n

xyxxxiy

n
yeeye ππ LK

Now observe that yk is either 0 or 1. If it is 0 then the 
corresponding term is, for example,  

NSTI-Nanotech 2008, www.nsti.org, ISBN 978-1-4200-8505-1 Vol. 340



( ) 0031002 =−nxxxie Lπ  

If it is 1 then the corresponding term is: 
( ) 1131012 =−nxxxie Lπ  

The sum over all possible values of y will eventually assign 
both 0 and 1 to every yk, therefore the following 
superposition is equivalent to the above: 

( )( ) ( )( )
( )( )10

2
1

10
2

110
2

1

0

10110

2

222

xi

xxxixxxi

e

eexF n

π

ππ

+⊗

⊗+⊗+= − LKK

 

And this already points to the way we can implement a 
QFT circuit. Consider the following circuit:  

 
Figure 1 QFT circuit. 

 
Here, as before, H is the Hadamard operator and Rd is a 
controlled gate defined by:  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= did e

R 2/0
01
π  Where d is the distance between the 

lines. Let us analyze this circuit step by step: after the first 
Hadamard gate the top line becomes  

( )∑ ∑
= =

=−
1

0

1

0

2/2 22

2
11

2
1

y y

yixyx ey π    (8) 

The second step applies R1 to the top line under the control 
of the middle line. Observe that R1 does nothing to 0 and 

phase shifts 1 . The phase shift factor is 2/πie if the control 

line 1x is 1 and there is no phase shifts if 01 =x . We 
can therefore write that the phase shift inflicted by R1 on 
1  is always 2/xie π , where x is the control signal.  

Applying this to states on the top and on the middle line 
yields  

( )( ) ( )( )
( )( ) ( )( )10

2
110

2
1

10
2

110
2

1

2112

122

2
1

4/2/2
1

2/2
1

2
11

xxixxi

xixixi

exex

eexexR

ππ

πππ

+⊗=+⊗=

+⊗=+⊗

+

 (9) 

The third gate applies R2 to the top line, but this time 
under the control of the bottom line. This operator, again, 

will do nothing to 0 , but will phase shift 1 by 

additional 4/0xie π so the state of the whole system now 
becomes:  

( )( )
( )( )
( )( )
( )( )10

2
1

10
2

1

10
2

1

10
2

1

210

210

121

21

2
10

2/4/8/2
10

4/2
10

2
102

xxxi

xxxi

xixxi

xxi

exx

exx

eexx

exxR

π

π

ππ

π

+⊗⊗=

=+⊗⊗=

+⊗⊗=

=+⊗⊗

++

   (10) 

Reasoning as above we can see immediately that the next 
two gates applied to 1  will convert it into 

( )( )10
2

1
102 xxie π+ . So that now the state of the 

computer is:  

( )( )
( )( )10

2
1

10
2

1

210

102
0

xxxie

xxi

e

ex

π

π

+⊗

+⊗
   (11) 

And finally the single Hadamard transform on the bottom 
line converts 0x to ( ) 2/10 02 xie π+ , so that in effect 
the final state of the computer is:  

( ) ( ) ( )( )
( )( )10

2
1

10
2

110
2

1

210

100

2

22

xxx

xxixi

e

ee

π

ππ

+⊗

+⊗+
 (12) 

But this is a 3-point Quantum Fourier Transform, so the 
circuit shown above is a QFT circuit. 
 

4 RESULTS 
 
In the table 1 and 2, we can see the results comparing 

QFT circuit with FFT development in commercial software 
(MATLAB). These bounds allow simulation for many 
choices of N and ǫ. However the choices for M and L given 
in odd integer can usually be improved, and were merely 
given to show such values can be found. For example, the 
following table shows, for different N and ǫ combinations, 
a triple (g,m, l) of integers, with the choice from line 86 
being M = 2g; yet in each case M = 2m and L = 2l is the 
pair with minimal m satisfying the hypotheses for odd 
integer Thus choosing M and L carefully may allow lower 
qubit counts, such as the N = 13, ǫ = 0.10 case. 

NSTI-Nanotech 2008, www.nsti.org, ISBN 978-1-4200-8505-1 Vol. 3 41



Table 1, Values for QFT circuit simulator 

ǫ N=13 N=25 N=51 N=101 N=251 N=501 
.001 45,45,28 47,47,28 48,48,29 50,50,29 52,52,30 53,53,30 
.01 36,35,21 37,37,22 38,38,23 40,40,23 42,42,23 43,43,24 
.05 29,28,17 30,30,17 31,31,18 33,33,18 35,35,19 36,36,19 
.10 26,25,15 27,27,15 28,28,16 30,30,16 32,32,17 33,33,17 
.20 23,22,13 24,24,13 25,25,14 27,27,14 29,29,15 30,30,15 
.30 21,20,12 22,22,12 24,24,12 25,25,13 27,27,13 29,28,14 
.40 20,19,11 21,21,11 22,22,12 24,24,12 26,26,13 27,27,13 

Table 2, Values for classical FFT 

ǫ N=13 N=25 N=51 N=101 N=251 N=501 
.001 43,43,27 46,46,27 48,49,30 54,51,28 51,532,31 52,52,29 
.01 35,34,22 36,36,23 39,39,22 41,41,22 41,41,22 42,42,23 
.05 30,29,19 31,31,16 32,32,19 34,34,19 34,33,19 38,39,16 
.10 25,25,16 26,26,15 27,28,15 31,32,15 31,31,15 32,32,16 
.20 23,2113 25,24,14 26,24,15 26,26,14 30,30,16 31,32,16 
.30 20,20,11 22,21,10 26,25,13 27,26,14 28,26,12 28,27,16 
.40 21,14,16 23,27,12 23,24,14 25,23,13 27,28,14 26,28,12 

 
5 CONCLUSIONS 

 
We processes the same acquiring sound on classical 

and commercial software using the FFT (Matlab), and the 
results are presented on table 1 and 2. And from the 
statistical results, we can see on comparison that there is a 
similar result using the QFT circuit simulator as the similar 
FFT. The problems that we resolved is the time for 
processing using the QFT, is because this algorithm have 
very cost on memory and resources on hardware, and the 
time for processing is almost 3 and four hours. So, we 
recommend using a good processor with enough memory 
for then. 

The age of Quantum Information Processing has 
arrived, and the solution for different applications is high. 
Right know we can say that the using for QFT for 
processing gives us the next advantage:  

• Massive parallelism, this for the superposition 
theory 

• Reversible logic 
• When the QFT can be done, the processing time 

will be faster 
 

6 REFERENCES 
 

[1].  P.W.Shor, SIAM J.Comput 26, 1484 (1997). 
[2]. M.A.Nielesn, I.L.Chuang, Quantum Computation 

and Quantum Information (Cambridge University 
Press, Cambridge, England, 2000). 

[3]. S.Beauregard, Circuit for shor’s algorithm using 
2n+3 qubits, quant-ph/0205095. 

[4] M.Mosca and A.Ekert, The hidden subgroup 
problem and eigenvalue estimation on a quantum 
computer, quantph/9903071. 

[5]. M.Ettinger and P.Hoyer, On quantum algorithms 
for non-commutative hidden subgroups, quant-
ph/9807029. 

[6]. C.Moore and M.Nilsson, SIAMJ. Comput 31, 799 
(2001). 

[7]. R.Cleve and J.Watrous, Fast parallel circuits for the 
quantum fourier transform, quant-ph/0001113. 

[8]. A.Saito, K.Kioi, Y.Akagi, N.Hashizume, and 
K.Ohta, Actual computational time-cost of the 
quantum fourier transform in a quantum computer 
using spins, quantph/0001113. 

[9]. Ethan Bernstein and Umesh Vazirani, Quantum 
complexity theory, SIAM Journal on Computing, 
26 (1997), no. 5, 1411–1473. 

[10].Thomas Beth, Markus P¨uschel, and Martin 
R¨otteler, Fast quantum Fourier transforms for a 
class of non-abelian groups, Proc. of Applied 
Algebra Algebraic Algorithms, and Error 
Correction Codes (AAECC-13, Springer-Verlag, 
1999, volume 1719 in Lecture Notes in Computer 
Science, pp. 148–159. 

[11] I. L. Chuang and M. A. Nielsen, Quantum 
computation and quantum information, Cambridge 
University Press, Cambridge, 2000. 

[12].R. Cleve, E. Ekert, C. Macchiavello, and M. Mosca, 
Quantum algorithms revisited, Proc. Roy. Soc. 
Lond. A 454 (1998), 339–354. 

 
 
 

 

NSTI-Nanotech 2008, www.nsti.org, ISBN 978-1-4200-8505-1 Vol. 342


