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ABSTRACT

The PSP model [1], a generalized Surface-Potential
(SP) model, has been chosen to be an industry standard
for the next generation, 60nm, technology. In order to
include quantum effects within surface potential models
we use asymptotic analysis techniques [2], [3] applied to
the the Density-Gradient equations [4]. Our quantum
modified surface potential (SP) results from the ability
to obtain a first integral of the Poisson equation.
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1 The Quantum Problem

For MOSFETs, the ratio of the maximum channel
dopant concentration to the intrinsic level is normally
very large, therefore following [6], a large parameter λ
is introduced as

λ = max
∣∣∣∣
N(x1)

ni

∣∣∣∣ =
NA

ni
,

where NA is the substrate doping and ni is the intrin-
sic carrier density in silicon. To normalize the electron
concentration in the device, the following rescaling is
performed

(ψ, Φn) = (w, φ)Vth ln λ, x1 = xLD

(
2 ln λ

λ

)1/2

where Vth is the thermal voltage, x1 is the coordinate
perpendicular to the motion of carriers. The quantity

LD =
(

kTεsi

niq2

)1/2

is the Debye length.
In the DD model, the electron and hole drift poten-

tials are φn = φp = φ, but according to the DG model,
φn and φp are given by

φn = φ + φqn, φqn = 2bn
∇2
√

n√
n

φp = φ + φqp, φqp = 2bp

∇2√p√
p

bn =
h̄2

4rnmnq
, bp =

h̄2

4rpmnq

where n and p are the electron and hole densities respec-
tively, h̄ is Planck’s constant, r is a fitting parameter,
m is the mass of the electron and q is its charge. The
quantum corrections φqn and φqp are derived from the
Schrödinger equation, based on the finite curvature (en-
ergy) and strict continuity of wave functions.

In the DG model, a microscopic quantum descrip-
tion is used in regions with dominant quantum effects,
and a macroscopic (fluid-type) model is employed in
subregions where collisional effects are expected to be
dominant [5]. In the expression for φn, the correction
φqn to the quasi-Fermi potential is derived using Boltz-
mann statistics. With the quantum corrections to the
DD model, the governing equations become

d2w

dx2
=

n− p

NA
+ 1, (1a)

w − φ =
1

ln λ
ln

(
n

ni

)
− λβ2

(lnλ)2
1√
n

d2
√

n

dx2
, (1b)

where β2 = 2bn

VthL2
D

. The quantum correction does not
affect the boundary conditions for the potential at the
Si/SiO2 interface, but using the well-accepted boundary
condition for the electron density, the boundary condi-
tions for (1) are n(0) = 0, w(0) = ws, and w(∞) =
w∞ ∼ −1, as well as the Robin boundary condition

dw

dx

∣∣∣∣
x=0

= c(ws − Vgs), (2)

2 The Subthreshold Case

The subthreshold case corresponds to the weak inver-
sion regime, meaning 0 ≤ ws(Vgs) ≤ 1. In this case, the
dominant contribution to the space charge density near
the interface arises from the immobile acceptor ions, NA

[6]. Thus, the system of equations for the subthreshold
case becomes

d2w

dx2
= 1, (3a)

w − φ =
1

ln λ
ln

(
n

ni

)
− λβ2

(lnλ)2
1√
n

d2
√

n

dx2
. (3b)

We will determine the potential and electron density
using matched asymptotic expansions (MAE’s). This
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is done by introducing a quantum inner layer near the
interface governed by (3) and an outer depletion layer
governed by the classical model, and properly matching
them.

3 Asymptotics

In the region near the interface, the quantum inner
layer, the device behavior is drastically different than in
the classical case. Solutions in this layer are obtained by
formal expansions in a small parameter, ε. Following [7],
the quantum inner layer independent variable scaling is

X =
x

ε
where ε2 =

λβ2

2 ln λ
.

The dependent variables of (3) are also expanded for-
mally in powers of ε as

(w, T, Y ) = (W0, T0, Y0) + ε(W1, T1, Y1) +O(ε2),

where it is convenient, as in [7], to use the following
rescaled variables

T =
√

n

ni
or Y =

1
ln λ

ln
(

n

ni

)
. (4)

When the scaled independent variable X is substituted
into (3a), the equation reads

d2w

dX2
= ε2 thus

d2

dX2
(W0 + εW1 +O(ε2)) = ε2.

Equation (3b) can be rewritten in terms of either T or
Y as

1
T

d2T

dX2
− ln T +

ln λ

2
(w − φ) =0, (5a)

d2Y

dX2
+

1
2

ln λ

(
dY

dX

)2

+ w − φ− Y =0. (5b)

The boundary condition is also written in terms of the
scaled variables as

d

dX
(W0 + εW1 +O(ε2))

∣∣∣∣
X=0

= εc(W0s − Vgs). (6)

The value of the potential at x = 0 in this paper is
defined as ws ≡ W0s. Separating in orders of ε and
using the boundary condition (6) to solve the resulting
systems, the inner solution W (X) = W0(X)+εW1(X)+
O(ε2) is

W (X) = W0s + εc(W0s − Vgs)X +O(ε2). (7)

This quantum inner layer solution represents the device
behavior close to the interface, on the order of the ref-
erence length, LD

√
ln λ/λ, which has a value of 123 nm

for λ = 106 [7]. Equation (5b) will describe the quan-
tum potential’s coupling to the electron density in this
layer.

Proceeding the quantum inner layer is the depletion
outer layer, because in the subthreshold case, the device
has not yet gone into inversion, thus no inversion layer
is present. The equations for the outer depletion layer
are

d2w

dx2
= 1, (8a)

n(x) = nie
(w−φ) ln λ. (8b)

Expanding the depletion potential and boundary condi-
tion using w(x) = w0(x)+ εw1(x)+O(ε2) and grouping
into orders of ε, we arrive at the following depletion layer
solution:

w(x) =
1
2
x2 + (a0 + εa1)x + (b0 + εb1) +O(ε2). (9)

The coefficients (a, b) = (a0, b0) + ε(a1, b1) + O(ε2) are
determined by matching the depletion potential on the
left with the quantum layer, and on the right with a
transition layer that is used to blend the solution with
the bulk. To match the depletion layer with the quan-
tum layer, an intermediate variable is introduced:

xη =
x

η(ε)
, where ε ¿ η(ε) ¿ 1.

This gives a0 = c(W0s − vgs), b0 = W0s, b1 = 0. No in-
formation on the coefficient a1 can be extracted by the
matching with the quantum layer, so this information
comes by matching the depletion layer with the bulk
solution, wb(x) = −1 + O(1/λ2 ln λ). The matching of
the depletion layer with the bulk is done in [6] by in-
troducing a transition layer about some unknown depth
xd (referred to as the depletion width) where the proper
scalings are

xt = (x− xd)(lnλ)1/2, w = wt(xt) = −1 +
h0(xt)
ln(λ)

.

In terms of these new scaled variables, the transition
layer equation for h0 is

d2h0

dx2
t

= 1− e−h0 ,

where h0(∞) = 0 is needed to match to the bulk. It is
not possible to explicitly integrate this equation, how-
ever a first integral provides the implicit expression

−
√

2xt =
∫ h0

1

(e−y + y − 1)−1/2 dy.

Analogous to the matching of the depletion layer with
the quantum layer, we define an intermediate variable

xη =
x− xd

η(λ)
where

1
(lnλ)1/2

¿ η(λ) ¿ 1.
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Expanding the implicit transition layer solution as xt →
∞ or alternatively as h0 →∞ provides

wt(xη) ∼ 1
2
η2x2

η −
kηxη√
2 ln λ

+
1

ln λ

(
k2

4
+ 1

)
− 1,

where

k =
∫ ∞

1

[(y − 1)−1/2 − (e−y + y − 1)−1/2] dy ≈ 0.81785.

See [6] for more details describing this numerical result.
Expanding the depletion solution (9) using w(xη) =
w0(xη) + εw1(xη) +O(ε2) in terms of the intermediate
variable gives

w(xη) =
1
2
(ηxη + xd)2 + c(W0s − Vgs)(ηxη + xd)

+εa1(ηxη + xd) + W0s +O(ε2).

Comparing the depletion and transition solutions toO(1)
and O(η) gives the following equations

O(1) :
1
2x2

d + (c(W0s − Vgs) + εa1)xd

− 1
ln λ

(
k2

4 + 1
)

+ W0s + 1 = 0

O(η) : xd + c(W0s − Vgs) + εa1 + k√
2 ln λ

= 0

Solving this system of equations for a1 and xd gives

a1 = −1
ε

[√
2

(
1 + W0s − 1

ln λ

)1/2

+ c(W0s − Vgs)

]

xd =
√

2
(

1 + W0s − 1
ln λ

)1/2

− k√
2 ln λ

.

Thus, we are now able to write the full depletion layer
solution w(x) = w0(x) + εw1(x) +O(ε2) as

w(x) =
1
2
x2−

√
2

(
1 + W0s − 1

ln λ

)1/2

x+W0s +O(ε2).

(11)
This expression for the depletion layer potential agrees
with the results obtained in the weak inversion-depletion
analysis done in [6]. From this expression we notice that
the expansion breaks down near flatband where ws =
−1 + O(1/ ln λ) [6]. At this point, it is possible to use
the boundary condition (2) for the depletion potential
(11) to derive an expression for surface potential W0s

in terms of applied gate voltage Vgs. The boundary
condition states that

dw

dx

∣∣∣∣
x=0

= c(W0s − Vgs),

thus,

−
√

2
(

1 + W0s − 1
ln λ

)1/2

= c(W0s − Vgs).

Solving the above expression for W0s(Vgs) gives

W0s(Vgs) = Vgs +
1
c2
−
√

2
c

(
1

2c2
+ 1 + Vgs − 1

ln λ

)1/2

,

(12)
which gives an explicit value for the surface potential
given any gate voltage. Analogously, solving the classi-
cal equation in the depletion region gives

ws(Vgs) =
1
c2

+ Vgs −
√

2
c

(
1

2c2
+ 1 + Vgs

)1/2

. (13)

The equations (5) relating the quantum layer poten-
tial and electron density is independent of the solution
regime being examined, and consequently the solution
is the same as in [7] where the strong inversion case is
examined. The solution is obtained by substituting the
expansion T = T0 + εT1 + O(ε2) into (5a) and taking
O(1) terms, giving

d2T0

dX2
− T0 ln(T0) +

ln λ

2
(W0 − φ)T0 = 0,

where from (4) we can write

T0 = exp (Y0 ln λ/2),
τ0s ≡ T0(∞) = exp ((W0s − φ) ln λ/2).

Using these expressions with the quantum inner solu-
tion W0(X) = W0s and boundary condition, this O(1)
expression can be written as

d2S0

dX2
= S0 ln(S0) where S0 =

T0

τ0s
.

The solution to this equation is available only in implicit
form, but an approximation that yields similar asymp-
totic results is

S0(X) = tanh (X/2),

which has the required behavior at X ¿ 1 and asymp-
totic decay for X À 1 [7]. From this approximation,
the expression for the quantum electron density can be
expressed in terms of Y as

Y0(X) =
2

ln λ
ln (τ0s tanh (X/2))

= W0s − φ +
2

ln λ
ln (tanh (X/2)). (14)

In the depletion layer, the electron density behaves clas-
sically, with a straightforward expression given by (8b).

To correctly represent the composite solution through-
out the entire region, the two separately calculated so-
lutions are added together and the common terms are
subtracted out. Following [7],

Y =
1

ln λ
ln

(
n

ni

)
= w0 + εw1 + Y0 −W0s + · · · .
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Thus, using this expression and solving for the electron
density n(x), the result is given by

n(x) = ni exp [(w(x) + Y0(x)−W0s) ln λ] , (15)

where w(x) and Y0(x) are given respectively by (11) and
(14), and W0s is the common term subtracted out.

4 First Integral

An interesting calculation can be done in which the
governing equations in the quantum case (1) can be in-
tegrated once to give an exact expression for ws(Vgs).
This is done by first making the substitution a =

√
n to

simplify the equations, which gives

w′′ =
a2 − p

NA
+ 1, (16a)

w − φ =
1

ln λ
ln

(
a2

ni

)
− λβ2

(lnλ)2
a′′

a
, (16b)

where p = ni exp (−w ln λ). Multiplying (16a) by w′

gives

a2w′ = NA(w′w′′ − w′) + nie
−w ln λw′, (17)

and multiplying (16b) by aa′ gives

aa′w −
[
a2φ

2

]′
=

1
2 lnλ

[
a2

(
2 ln

(
a√
ni

)
− 1

)]′

− λβ2

(lnλ)2

[
(a′)2

2

]′
. (18)

Finally, we use the identity (a2w)′ = 2aa′w + a2w′ to
combine (17) and (18) into a single equation in which
every term can be integrated once. After integrating,
we obtain

1
2

[
a2w −NA

(
1
2
(w′)2 − w

)
+

ni

ln λ
e−w ln λ

]
− a2φ

2
=

a2

2 ln λ

(
2 ln

(
a√
ni

)
− 1

)
− λβ2

(ln λ)2
(a′)2

2
+

K

2
, (19)

where K is an integration constant that is determined
using the limiting values of w and a as x → ∞. The
constant works out to be

K

NA
= w∞ +

1
ln λ

[
2e−w∞ ln λ

λ
− 1

]
.

Now we let x = 0 and use the boundary conditions
a(0) = 0, w(0) = ws, w′(0) = c(ws − Vgs) to get

c(ws−Vgs) = −
√

2
(

ws +
e−ws ln λ

λ ln λ
+

λα2β2

NA(lnλ)2
− K

NA

)1/2

,

where α ≡ a′(0). One method of computing α without
requiring the complete analytic solution to the ODE’s

(1a) and (1b) is to use an asymptotic expansion in x
to determine w and a in a “quantum boundary layer”.
In [7] matched asymptotics were used to find a uniform
asymptotic solution for w and a in the case of inversion,
ws ≥ 1. Since we only need the value of α, only the
solution in this quantum boundary layer is necessary.
Even though their results were for the strong inversion
case, by using the first term of the asymptotic solution
in this quantum layer we found that

α = a′(0) ≈ 1
ε

√
niλ ln λ

2
.
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