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ABSTRACT 

 
An explicit carrier-based core model for the long channel 

undoped surrounding-gate MOSFETs is presented in the 
paper. An analytic approximation solution to the carrier 
concentration is developed from a simplified Taylor 
expansion of the exact solution of Poisson’s equation of the 
surrounding-gate MOSFETs, instead of resorting to the 
Newton-Raphson numerical iterative. The analytic 
approximation not only gives accurate dependences of the 
carrier concentration on the geometry structures and bias, 
compared with the Newton-Raphson numerical method, but 
also is used to develop an explicit current-voltage model of 
the surrounding-gate MOSFETs combined with Pao-Pah 
current formulation. The presented explicit model is found 
to be computationally more efficient than the previous 
numerical Newton-Raphson iterative while more accurate 
than the previously published explicit model.   
 
Keywords: device physics, compact model, surrounding-gate 
MOSFET, carrier-based model. 
 

1  INTRODUCTION 
 

The SRG-MOSFET based circuit design is contingent on 
the precision of the explicit transistor model involved in 
circuit simulation. In addition to the precise description of 
the SRG device characteristics, computation efficiency 
remains an important constraint for the SRG compact model 
to efficient circuit simulation. In the recent years, there were 
some reports investigating the compact models of the non-
classical SRG MOSFET device characteristics [1-4]. 
D.Jimenez and his co-workers developed the β -based 
model and the result matched well with the 3-D simulation 
[2]. Following a quite different method, Jin He’s group 
developed a carrier-based non-charge-sheet analytic model 
for SRG MOSFETs directly from both Poisson equation 
solution and Pao-Sah current formulation [3-4]. These 
models provide a fundamental yet solid basement for 
engineers and circuit designers to understand the SRG 
device physics and characteristics. However, most 
developed SRG MOSFET models rely on numerical 
iteration or table-lookup to solve the fundamental nonlinear 
implicit equations between the input voltage and the state 
variables such as β , potentials and carrier [2-4]. We noted 
that B. Iñíguez et al. presented an explicit charge-based 

compact model for SRG-MOSFET devices based on the 
threshold voltage concept and smooth functions in [5]. 
However, it is observed from the accuracy test that this 
explicit model is not good enough for high precise 
requirement of the SRG-MOSFET core model because it 
gives the prediction with the relative drain current error up 
to 32% error in the moderate inversion region which is very 
important for non-classical MOSFET low voltage and low 
power circuit design.   

A SRG MOSFET compact model for circuit simulations 
requires accurate yet computation efficient core framework. 
Thus, the aim of SRG-MOSFET compact model formulation 
is to conflate an accurate description of device 
characteristics with high computational efficiency.  In this 
brief, an explicit carrier-based SRG MOSFET current-
voltage model has been presented from an accurate yet 
analytic approximation to the carrier concentration solution. 
Compared with the  previous explicit model [5]. 

 
2 EXPLICIT MODEL DERIVATION 

 
The undoped SRG MOSFET structure and coordinate 

system used in the analysis are shown in Fig.1. Following a 
carrier-based approach [2-4], a complete Poisson equation 
solution in terms of the silicon center mobile carrier 
concentration as a function of the gate voltage, quasi Fermi 
potential, and the geometry structure is derived as shown in 
[4].  

 

Fig.1 Schematic diagram of a SRG MOSFET 
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 is the Debye length of the intrinsic silicon 

materials, in  is the intrinsic silicon concentration with the 

unit of 3cm− , sφ  is the electrostatics in Volt at the silicon 
surface. /kT q and 

chV are the thermal voltage and the quasi-

Fermi-potential in Volt , respectively. 0n is the induced 
electron concentration at the silicon center with the unit 3cm− .  

oxt  and R are the gate oxide thickness and the SRG 
MOSFET silicon radius in cm, respectively. 

It is evident that the mobile carrier concentration on the 
silicon film center can be obtained from Eq. (1) for the 
given gate voltage, quasi Fermi potential and structure 
parameters such as the oxide layer thickness and the silicon 
film thickness. However, Eq. (1) is a nonlinear implicit 
equation, which needs a very accurate solution for complete 
current-voltage and capacitance model development. 
Traditionally, this equation was solved by a Newton-
Raphson iterative routine or table-lookup method in terms 
of some intermediate variables such as the carrier 
concentration and β  [1-4]. The numerical iterative and 
table-lookup methods, however, are not preferred for a 
compact model due to the need of extensive computation 
time and memory to store intermediate data. Thus, an 
accurate analytic approximate solution for the carrier 
concentration is desired for the explicit current-voltage 
model development for the SRG MOSFETs. 

Here, we follow a recently developed method to derive 
an analytic approximation solution to the carrier 
concentration based on a simplified Taylor expansion 
formulation [6].  Firstly, we transformation Eq. (1) into a 
normalized formulation for simplicity 
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In order to obtain an analytic approximation of (2), we 

use the perturbation method to get the correct functions for 
an initial guess that is accurate enough.  As shown in [6, 7], 
the correction function can be derived out from the 
modified Taylor expansion of a function 
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(5) will be used to build an analytical approximation 

solution. The exact first and second derivatives are obtained 
from (2) 
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And then substituting them into (5) gives  
 

( )
( ) ( )

( ) ( ) ( )

2 2

2 2

1'
2 1 1 1

f i
f i i i

f
i i i i i i

δ

λ

=−
+ +

+
+ + + + +

                           (8) 

 
Here, we need a continuous and accurate initial guess 

before the use of (8), which can be obtained from (2). Since 
i  has non maximum boundary and the term [ ]ln 1 i+ has a 
little contribution in (2) either for the sub-threshold or the 
strong inversion region. Thus, we can review (2) as a W-
Lambert function by neglecting the term [ ]ln 1 i+  and it has 
a simple approximation for the principal branch 
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In physics, bi  presents an asymptotic approximation 

developed.  If δ  is a relative small refinement and we 
define 
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Then δ  is obtained from (8).  We define  
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As a result, we have 
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Further, we define 
  

2
1 0 0 0lnf g i i iλ⎡ ⎤= − + −⎣ ⎦                                             (13) 

0i i α= +                                                                         (14) 
 
Finally, substituting (13), the first and second 

derivatives as a function of 0i  into (8) to get the symbol 
expression of α , we obtain the accurate analytic 
approximation of the normalized carrier concentration  
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This analytic approximation requires computation of 

three logarithms, e.g. (9), (10) and (13) and one exponential 
(9), however, with no iteration.  As long as i  is obtained, 
the electron concentration can be calculated based on (3).  

Once the carrier concentration solution is obtained, the 
Poisson equation solution (1) is coupled to the Pao-Sah 
current formulation can result in the explicit current-voltage 
and capacitance-voltage model. For a given

gV ,
0n   is solved 

from (1) as a function of
chV . Following Pao-Sah current 

formulation [7], integrating 
dsI dy from the source to the 

drain and expressing /chV dy  as 0 0( / )( / )chdV dn dn dy , the 
drain current is written as 
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where 0sn  and 0dn  are solutions of (1) corresponding to 

0chV =  and ch dsV V= , respectively.  Note that the 
0/chdV dn  

can also be expressed as a function of 0n  by differentiating 
(1).  Substituting these factors into (16), integrating can be 
performed analytically to yield:  
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3 RESULTS AND DISCUSSION 

 
The accuracy of the electron concentration calculation is 

one key factor for the SRG MOSFET performance 
prediction and circuit simulation. Comparison of the new 
analytic approximation (15) with the iterative numerical 
results of (2) for the carrier concentration calculation is 
shown in Fig.2 for the different silicon film radius.  We 
note that an excellent accuracy is achieved for the whole 
operation region for different silicon radius, e.g. nmR 5=  
or nmR 30= .   

In order to further demonstrate the accuracy of the 
developed analytic approximation, the relative error of the 
electron concentration prediction with the different methods 
is also shown in Fig.3 for the different silicon film 
thickness. It is easily found that the relative error 
introduced by the new analytic approximation (15) is under 
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Fig.2 Comparison of the electron concentration versus the 
gate voltage obtained from the analytic approximation 

(Solid curves) and the fully numerical Newton-Raphson 
method (points) in undoped cylindrical surrounding-gate 

MOSFETs with the midgap gates for silicon radius 
R=5nm(a) and R=30nm(b). 
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Fig.3 Relative error of the electron concentration 
calculation based on the analytic approximation and the 

Newton-Raphson iterative method for the different silicon 
radius in undoped cylindrical surrounding-gate MOSFETs 

with the midgap gates. 
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Fig.4 (a) Ids-Vgs curves and (b) Ids-Vds curve calculated 
from the explicit model (solid curves), compared with the 

numerical iterative results (points). 

610− order. Such a precise is satisfactory enough for the 
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compact modeling development of the SRG MOSFETs.  
Fig. 4(a) shows the good comparison of the drain 

current versus gate voltage between the explicit model and 
the iterative method for three silicon body radius, 
e.g. 5R nm= ,15nm  and 30nm . It is easily found that 
the explicit prediction shows in agreement with the iterative 
results. Again, it is found that the sub-threshold current is 
almost proportional to the square of the silicon body 
diameter because of the “volume inversion” effect. To 
optimize the device performance, the silicon film body 
radius should be reduced as much as possible, e.g., a 
nanowire body to be used, to suppress the off current 
although it is difficult in fabrication process. Fig. 4(b) is Ids-
Vds curves calculated from the explicit model (solid curves), 
compared with the numerical iterative results (dots).  Both 
match well in both the linear and the saturation region.  
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                      (a)                                               (b) 

Fig.5 Predicted drain current relative error from B. Iñíguez 
et al’s explicit model in reference [5] (a) and from the 

presented explicit model in this paper (b), compared with 
the iterative method. 

We noted that B. Iñíguez et al. presented an explicit 
charge-based compact model for SRG-MOSFET devices 
based on the threshold voltage concept and smooth 
functions in [5].  One interesting issue is to compare the 
accuracy and computation efficiency of two different 
explicit SRG models. Such a relative drain current error 
comparison is shown in Fig.6 for two different silicon body 
radius. It is observed from Fig.5 that B. Iñíguez et al’s 
explicit SRG-MOSFET model gives the drain current 
prediction with the different relative error, e.g. the 
maximum relative error is 13% for 30R nm=  while up to 
about 32% for 5R nm= .  

  
4 CONCLUSIONS 

 
An explicit carrier-based model for the undoped 

surrounding-gate MOSFETs has been developed in this 
brief by an accurate yet analytic carrier concentration 
approximation from Poisson equation solution of the SRG 
MOSFETs.  The accuracy of the electron concentration 
calculation has also been verified compared with the result 

of the iterative method. It is shown that the predicted 
current-voltage curves are in complete agreement with the 
fully numerical iterative results without any fitting 
parameter.  Compared with the previous explicit model and 
numerical iterative method, the presented explicit model 
requires no numerical iteration but more accurate and 
computation efficient, thus it is more suitable to implement 
SRG MSOFET core model into the circuit simulators for 
circuit design and application.  
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