
Towards an efficient multidisciplinary system-level framework
for designing and modeling complex engineered microsystems

J. V. Clark1,2, Yi Zeng1, Pankaj Jha1

1School of Electrical and Computer Engineering

2School of Mechanical Engineering
Purdue University, USA, E-mail: jvclark@purdue.edu

ABSTRACT

We present advances in designing and modeling
complex microsystems at the network/system-level. For
design, we develop a graphical user interface that allows
users to quickly configure complex systems in 3D using a
computer mouse or pen. And we couple it with a powerful
Matlab-based netlist language for design flexibility. For
modeling, we apply recent advances in analytical system
dynamics and differential-algebraic equations into a
framework that facilitates the systematic modeling of
multidisciplinary systems with holonomic and non-
holonomic constraints. For a test case, we efficiently
simulate a microsystem comprising gears, hinges, slider,
electronic components, comb drives, and electromechanical
flexures. In comparison, it is difficult to model, configure,
and simulate such a microsystem using conventional tools.

Keywords: GUI, netlist, DAE, PSugar, Sugar, MEMS, design,
modeling, simulation, constraints, multidisciplinary.

1. INTRODUCTION

Distributed-element tools using finite element analysis
(FEA) are often used for characterizing new geometries and
interactions [1]. However, a significant number of
microsystem designers reuse parameterized sets of well-
characterized elements. This area of design and modeling
led to the development of network/system-level tools for
microsystems. Examples include Sugar [2], Nodas [3],
Architect [4], and Synple [5]. What such tools have in
common are: (1) the ability to abstract the configuration of
a system in the form of a netlist, where each line of text
describes an element’s connectivity to other elements, its
orientation, and it modeling parameters; and (2) a
significant reduction in the computation time (when
compared to FEA) by using computationally-efficient
models based on reduced order modeling, matrix structural
analysis, and or modified nodal analysis [2]-[5]. Such
benefits facilitate the exploration of parameterized design
spaces of systems with a multitude of components.

Recently, there has been interest in accommodating the
user’s need to efficiently design, model, and simulate
complex engineered microsystems. Users demand friendlier
graphical user interfaces, more flexible netlist capabilities,
and less complicated modeling frameworks [2]. In effort
toward fulfilling these requirements, in this paper we

expand upon our previous effort called Sugar to develop an
interactive GUI-netlist and a systematic modeling
framework. The present effort is called PSugar. Its
architecture is illustrated in Figure 1.

In Section 2, we present our powerful netlist features.
In Section 3, we present our novel 3D interactive GUI
technology. In Section 4, we present our systematic
modeling framework. In Section 5, we discuss differential-
algebraic equation solvers. And in Section 6, we provide a
simulation example based on a microsystem developed by
Sandia National Lab.

2. NETLIST

In this section we present PSugar’s netlist capabilities
by comparing it to Sugar’s netlist capabilities.

What we improve on is the limited capabilities of
Sugar’s netlist language. For instance, Sugar’s netlist
syntax has the form

model1 layer1 [nodes1] [parameters1]
modelN layerN [nodesN] [parametersN]

where model is the name of the element model, e.g.,
mechanical flexure, resistor, comb drive, anchor, etc.; layer
is the material that the element is composed of; nodes is a
list of element nodes which are the places that the element
can be connected to the nodes of other elements; and
parameters is the list of modeling parameters, e.g.
orientation, Young’s modulus, residual stress, temperature,
etc. Sugar’s netlist language allows for subnets and
importing parameter values from the Matlab workspace into
the netlist. However, some problems with this format are as
follows. The format requires the user to continuously

Figure 1: Architecture of PSugar. The ellipses symbolize
parameters and constitutive relationships of a prescribed system;
the rectangle symbolizes solution algorithms, which assemble
and solve the mathematical representation of the system.

NSTI-Nanotech 2008, www.nsti.org, ISBN 978-1-4200-8505-1 Vol. 3 509

switch between two incompatible syntaxes – one for Sugar,
and another for Matlab and Sugar functions. The netlist
format allows simple arithmetic expressions such as
defining constants, allowing nodes to be represented by
simple array variables, and nested loops. However, it does
not allow sophisticated computations such as those dealing
with matrices or those needing access to external functions
from within the netlist. This limits design flexibility.
 PSugar’s netlist format overcomes these issues by being
100% Matlab compatible. Many students and professionals
are familiar with Matlab. PSugar’s netlist is an m-file with
arbitrary format, where the only requirement is that the
output must be a Matlab cell structure of the form

 [model1 {nodes1} {parameters1};
 modelN {nodesN} {parametersN}];

where model is the name of the element model; nodes is a
list of node names; and parameters is the list of modeling
parameters such as,

{‘L’ 100e-6; ‘force’ comb(V,W,H, L,N); ‘C’ cross(A,B) };

where the designer has unfettered access to all Matlab
functions, workspace quantities, and third party plug-ins.

3. GUI

In this section, we present a few of our efficient,
interactive GUI features.

Besides using a netlist, another way to configure a
system in PSugar is by using its graphic configuration
window (GCW). With a computer mouse or pen,
drawplanes and elements can be quickly and easily
positioned, repositioned, and default values can be edited in
the GCW. The GCW is coupled to an interactive netlist
window (INW). That is, each element that is graphically
configured in the GCW has its corresponding netlist text
automatically generated in the INW; and vice versa, a line
of netlist text entered into the INW immediately updates the
system configuration display in the GCW.

Drawplanes are uniquely determined with 3
coordinates. These 3 coordinates are identified in PSugar by
projecting the 2D cursor position upon the 3D xy-, zy-, or
xz-planes of the coordinate axis; or other object. For
example, Figures 2a-2c illustrate the 3-button-click
sequence to configure a drawplane in 3D. Figure 2d shows
an element placed on that drawplane using 2 button clicks.
By dragging a node about its associated plane, both
elements and drawplanes can be readily repositioned. The
GCW also has snap-to-grid and snap-to-node options.

The elements or subsystems that are configured onto
the GCW are selected through an element menu window
(EMW). The set of elements from PSugar’s library that are
listed in these EMWs are user-definable. For example, a
user may choose resistor, capacitor, inductor, opamp,
integrator, diode, rectifier, and transistor as button choices
for one EMW; and comb drive, beam, anchor, folded
flexure, hinge, point mass, and carbon nanotube as button
choices for another EMW. E.g., see Figure 3.

4. MODELING

In this section we discuss our systematic modeling
method, which reduces the modeler’s effort and readily
accommodates systems subject to algebraic constraints.

In our previous work with Sugar, we represented
microsystems as a set of second order differential equations
(ODEs) of the form,

0extMq Bq Kq F+ + − =�� � (1)

where M , B , K are the system mass, damping, and
stiffness matrices, and extF is the vector of externally

Figure 3: GUI. The GUI components shown are: GCW
(graphic configuration window), INW (interactive netlist
window), and a couple of EMWs (element menu
windows). Elements shown include a hinged mirror with
slider, folded flexure, and gear-pair in a local frame.

GCW
INW

EMW

Figure 2: Configuring drawplanes in the GCW. 2a-2c
shows a 3-button-click sequence to configure a drawplane
in 3D. 2d shows the placement of a resistor element on the
drawplane, using 2 button clicks. The 2a-2d sequence took
a user a couple of seconds.

2a

2b

2c

2d

NSTI-Nanotech 2008, www.nsti.org, ISBN 978-1-4200-8505-1 Vol. 3510

applied efforts such as electrostatic, gravitational,
noninertial, voltage, stress, etc. [2]. However, ODE solvers
are typically not equipped to solve a system of differential-
algebraic equations (DAEs) [6], where the system mass
matrix may be singular or zero. There are many complex
microsystems that are amenable to DAEs, such as those
comprising elements without inertia; elements with
displacement-, flow-, dynamic variable-, or effort-
constraints; or elements with inequality constraints.

The DAE form we use in PSugar is [7],

* * T T
f f q ext q q f

d T D V F T
dt

μ κ∇ +∇ +∇ − = ∇ −Φ −Ψ (2a)

()0 ,q t= Φ vector of displacement constraints (2b)

()0 , ,f q t= Ψ vector of flow constraints (2c)

()0 , , , ,e s f q tγ= Γ vector of effort constraints (2d)

()0 , , , , ,s e s s f q tγ= − Λ� � vector of dynamic variables (2e)

where ()* , ,T f q t , (), ,D f q t , and (),V q t are kinetic co-
energy, content, and potential; Φ , Ψ , Λ , and Γ are
displacement-, flow-, dynamic variable-, and effort-
constraints; ()tμ and ()tκ are Lagrange multipliers;

vector ()q t represents generalized displacements such as
the change in translation, rotation, charge, volume, entropy,
etc. Comparing (2a) to (1), each term on the left-hand side
of (2a) has the same meaning as each term in (1),
respectively; and vector f q= � is flow. However, (2a)
allows kinetic co-energy to be a function of q and allows
the dynamics to be constrained. Since vectors μ and κ are
additional unknowns, relations (2b) and (2c) are required
additional equations. (2d) is included to allow for effort eγ
constraints. And (2e) is included to allow for relations that
are not represented within the energy functions; e.g., time
derivatives of flow s dq dt=� � or time integrations of

displacement s q dt= ∫ , etc.
Systematic modeling in PSugar is as follows. Each

element has a representative parameterized model function
containing its energy functions, constraints, and efforts.
E.g. a linear 2-node, 12-DOF flexure model function
returns the symbolic scalar 1 12 12 12 12 11

2iV q K q× × ×= . The

assembler sums all energy functions, e.g.
1

N
ii

V V
=

= ∑ , then
substitutes the functions into (2a)-(2e) for symbolic
differentiation. Hence, in PSugar the modeler’s effort is
reduced to simply providing energy functions, constraints,
and efforts. The common practice of rigorously
manipulating a model into a particular form is eliminated.

5. SIMULATION

In general, the solution of a DAE involves solving a
nonlinear algebraic equation at each time step.

For instance, applying linear approximations to (2),
such as ()1 1 1n n n nq q q h+ + +≈ −� , Euler’s method yields

1
1

1

1
1 1 1 11 1

1

1

1

1

1
1

1

0

n n
n

n

T Tn n
n q n q n nn n

n

n

n

n

n n
n

n

q q
f

h
f f

M
h

s s
h

κ μ

+
+

+

+
+ + + ++ +

+

+

+

+

+
+

+

−⎛ ⎞−⎜ ⎟
⎜ ⎟
⎜ ⎟−

+Φ +Ψ − ϒ⎜ ⎟
⎜ ⎟
⎜ ⎟ =Φ
⎜ ⎟

Ψ⎜ ⎟
⎜ ⎟Γ⎜ ⎟

−⎜ ⎟
− Λ⎜ ⎟

⎝ ⎠

 (3)

where h is the step size in time, 2 *
fM T= ∇ , Qϒ = −

() ()* * *
f f q q fq t
T f T T V D∇ − ∇ +∇ −∇ −∇ , and the Jacobian

1nF y +∂ ∂ can be evaluated using finite differences. There
are several pubic domain solvers available for DAEs [6].
The choice of solver usually depends on the differential
index of the DAE; that is, the minimum number of times
that some or all of the equations would need to be
differentiated in time to determine its underlying ODE.
However, using an ODE solver to solve the resulting
underlying ODE is not preferred, because the solution
trajectory often drifts from the solution manifold that is
defined by the explicit constraints in the original DAE.
Methods such as BDF (Backward differentiation formula)
and IRK (implicit Runge-Kutta) improve Euler’s method by
using higher-order approximations for 1nq +� , 1nf +

� , and 1ns +� ,
and using variable step sizes.

Since Matlab’s ode15s and ode23t solvers are only for
index-1 DAE systems, we do not use them to directly solve
(2), because its index can be as high as 3. Currently, we use
any one of a collection of public domain high-index DAE
solvers. Future work includes developing a DAE solver that
exploits our particular DAE structure.

6. EXAMPLE

To exemplify our methodology, we simulate a
microsystem similar to one that was developed by Sandia
National Labs (Figure 5). We chose this particular system
as an example because it is difficult model and simulate
using conventional tools [8]. Multidisciplinary elements of
the microsystem comprise resistors, capacitors, voltage
sources, mechanical flexures, hinges, sliders, gears, and
electrostatic comb drives. Its representation in PSugar is
shown in Figure 6. We configure the system using both the
GUI and netlist (e.g. the repetitive comb fingers). The
system is represented by 4601 degrees of freedom. Using a
Pentium-4, 3GHz processor with 1GB RAM, our BDF
DAE solver averages 1.4 seconds per step in Matlab.

Identical ramp voltages applied to the two orthogonal
sets of comb drives rotate the smallest gear counter-

NSTI-Nanotech 2008, www.nsti.org, ISBN 978-1-4200-8505-1 Vol. 3 511

clockwise 2π∼ radians. As the voltage is removed, the
system settles back to its initial state. See Figure 7. Slack
between hinges and gear teeth are not modeled. The true
geometry and material properties of actual microsystem
shown in Figure 5 were not made available at the time of
this writing. The actual friction in the hinges, gears, and
slider are not known.

CONCLUSION

We presented a couple of design and modeling
advancements toward an efficient system-level framework
for complex engineered microsystems. Regarding design,
we presented our interactive GUI that allows users to
quickly and easily configure complex configurations; and
we presented our powerful netlist language, which
embraces the full flexibility and functionality of the Matlab
language. Regarding modeling, we discussed the systematic
method we use for representing complex, multidisciplinary

components by their energy functions, constraints, and
efforts. All code development was done in Matlab.

Some of our future work will involve verifying the
performance of complex systems (qualitative results were
presented here), developing a solver that fully exploits our
DAE structure, and enhancing our library with components,
subsystems, and complete systems.

ACKNOWLEDGEMENT

We thank R. A. Layton of Rose-Hulman Institute of
Technology and B. Fabian of the University of Washington
for insightful discussions on system dynamics.

REFERENCES

[1] S.D. Senturia, “CAD Challenges for Microsensors,
Microactuators and Microsystems,” Proceedings of the IEEE,
Vol. 86, No. 8, August 1998, pp. 1611-1626.

[2] J. V. Clark and K. S. J. Pister, “Modeling, Simulation, and
Verification of a Advanced Micromirror Using Sugar”,
Journal of Microelectromechanical Systems, Vol. 16, No. 6,
2007, pp. 1524-1536.

[3] G. K. Fedder and Q. Jing, “NODAS 1.3: Nodal Design of
Actuators and Sensors”, Proc. IEEE/VIUF Int. Workshop on
Behavioral Modeling and Simulation, Orlando, FL, Oct 1998.

[4] Coventorware, 951 Mariners Island BLVD, Suite 205, San
Mateo CA 94404. http://www.coventor.com

[5] IntelliSense Corporation, 600 W. Cummings Park Suite
2000, Woburn MA 01801. http://www.intellisense.com

[6] K. E. Brenan, S. L. Cambell, L. R. Petold, Numerical
Solution of Initial-Value Problems in Differential-Algebraic
Equations, SIAM, 1996.

[7] R. A. Layton, Principles of Analytical System Dynamics,
Springer, 1998.

[8] D. Sandison, “Keynote Address: Moving MEMS from
Novelty to Necessity – a National Security Perspective”,
TEXMEMS VII, El Paso TX, 2005.
http://www.uacj.mx/Texmems/Keynotes.htm

Figure 7: Transient analysis. Simulation of the
configuration shown in Figure 6. A pair of linear voltage
ramps applied across the two sets of orthogonal comb
drives rotates the smallest gear a quarter turn. After the
ramps end, the system settles back to its initial state.

Gear rotation
angle (rad) vs time (seconds)

Figure 6: PSugar configuration. A close representation of
the Sandia device from Figure 5 configured in PSugar. The
red beam in the figure is a laser reflecting off the mirror.

Micromirror in PSugar

Comb drives

Resistors,
capacitors,

voltage sources Hinged
mirror

Gear train

Laser beam

Flexures

slider
Rack and pinion

Figure 5: A complex microsystem.

Courtesy of Sandia National Lab

Micromirror by Sandia

NSTI-Nanotech 2008, www.nsti.org, ISBN 978-1-4200-8505-1 Vol. 3512

