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ABSTRACT 

 

We present advances in designing and modeling 
complex microsystems at the network/system-level. For 
design, we develop a graphical user interface that allows 
users to quickly configure complex systems in 3D using a 
computer mouse or pen. And we couple it with a powerful 
Matlab-based netlist language for design flexibility. For 
modeling, we apply recent advances in analytical system 
dynamics and differential-algebraic equations into a 
framework that facilitates the systematic modeling of 
multidisciplinary systems with holonomic and non-
holonomic constraints. For a test case, we efficiently 
simulate a microsystem comprising gears, hinges, slider, 
electronic components, comb drives, and electromechanical 
flexures. In comparison, it is difficult to model, configure, 
and simulate such a microsystem using conventional tools. 
 
Keywords:  GUI, netlist, DAE, PSugar, Sugar, MEMS, design, 
modeling, simulation, constraints, multidisciplinary.  
 

1. INTRODUCTION 
 

Distributed-element tools using finite element analysis 
(FEA) are often used for characterizing new geometries and 
interactions [1]. However, a significant number of 
microsystem designers reuse parameterized sets of well-
characterized elements. This area of design and modeling 
led to the development of network/system-level tools for 
microsystems. Examples include Sugar [2], Nodas [3], 
Architect [4], and Synple [5]. What such tools have in 
common are: (1) the ability to abstract the configuration of 
a system in the form of a netlist, where each line of text 
describes an element’s connectivity to other elements, its 
orientation, and it modeling parameters; and (2) a 
significant reduction in the computation time (when 
compared to FEA) by using computationally-efficient 
models based on reduced order modeling, matrix structural 
analysis, and or modified nodal analysis [2]-[5]. Such 
benefits facilitate the exploration of parameterized design 
spaces of systems with a multitude of components. 

Recently, there has been interest in accommodating the 
user’s need to efficiently design, model, and simulate 
complex engineered microsystems. Users demand friendlier 
graphical user interfaces, more flexible netlist capabilities, 
and less complicated modeling frameworks [2]. In effort 
toward fulfilling these requirements, in this paper we 

expand upon our previous effort called Sugar to develop an 
interactive GUI-netlist and a systematic modeling 
framework. The present effort is called PSugar. Its 
architecture is illustrated in Figure 1. 

In Section 2, we present our powerful netlist features. 
In Section 3, we present our novel 3D interactive GUI 
technology. In Section 4, we present our systematic 
modeling framework. In Section 5, we discuss differential-
algebraic equation solvers. And in Section 6, we provide a 
simulation example based on a microsystem developed by 
Sandia National Lab.  

 

 
2. NETLIST 

 

In this section we present PSugar’s netlist capabilities 
by comparing it to Sugar’s netlist capabilities. 

What we improve on is the limited capabilities of 
Sugar’s netlist language. For instance, Sugar’s netlist 
syntax has the form 

 

model1  layer1  [nodes1]  [parameters1] 
modelN  layerN  [nodesN]  [parametersN] 

 

where model is the name of the element model, e.g., 
mechanical flexure, resistor, comb drive, anchor, etc.; layer 
is the material that the element is composed of; nodes is a 
list of element nodes which are the places that the element 
can be connected to the nodes of other elements; and 
parameters is the list of modeling parameters, e.g. 
orientation, Young’s modulus, residual stress, temperature, 
etc. Sugar’s netlist language allows for subnets and 
importing parameter values from the Matlab workspace into 
the netlist. However, some problems with this format are as 
follows. The format requires the user to continuously 

 
 
Figure 1: Architecture of PSugar. The ellipses symbolize 
parameters and constitutive relationships of a prescribed system; 
the rectangle symbolizes solution algorithms, which assemble 
and solve the mathematical representation of the system. 
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switch between two incompatible syntaxes – one for Sugar, 
and another for Matlab and Sugar functions. The netlist 
format allows simple arithmetic expressions such as 
defining constants, allowing nodes to be represented by 
simple array variables, and nested loops. However, it does 
not allow sophisticated computations such as those dealing 
with matrices or those needing access to external functions 
from within the netlist. This limits design flexibility.  
      PSugar’s netlist format overcomes these issues by being 
100% Matlab compatible. Many students and professionals 
are familiar with Matlab. PSugar’s netlist is an m-file with 
arbitrary format, where the only requirement is that the 
output must be a Matlab cell structure of the form   
 

  [ model1 {nodes1} {parameters1}; 
   modelN {nodesN} {parametersN}]; 
 

where model is the name of the element model; nodes is a 
list of node names; and parameters is the list of modeling 
parameters such as, 

 

{‘L’ 100e-6;  ‘force’ comb(V,W,H, L,N);  ‘C’ cross(A,B) }; 
 

where the designer has unfettered access to all Matlab 
functions, workspace quantities, and third party plug-ins. 
  

3. GUI  
 

In this section, we present a few of our efficient, 
interactive GUI features.  

Besides using a netlist, another way to configure a 
system in PSugar is by using its graphic configuration 
window (GCW). With a computer mouse or pen, 
drawplanes and elements can be quickly and easily 
positioned, repositioned, and default values can be edited in 
the GCW. The GCW is coupled to an interactive netlist 
window (INW). That is, each element that is graphically 
configured in the GCW has its corresponding netlist text 
automatically generated in the INW; and vice versa, a line 
of netlist text entered into the INW immediately updates the 
system configuration display in the GCW.  

Drawplanes are uniquely determined with 3 
coordinates. These 3 coordinates are identified in PSugar by 
projecting the 2D cursor position upon the 3D xy-, zy-, or 
xz-planes of the coordinate axis; or other object. For 
example, Figures 2a-2c illustrate the 3-button-click 
sequence to configure a drawplane in 3D. Figure 2d shows 
an element placed on that drawplane using 2 button clicks. 
By dragging a node about its associated plane, both 
elements and drawplanes can be readily repositioned. The 
GCW also has snap-to-grid and snap-to-node options. 

The elements or subsystems that are configured onto 
the GCW are selected through an element menu window 
(EMW). The set of elements from PSugar’s library that are 
listed in these EMWs are user-definable. For example, a 
user may choose resistor, capacitor, inductor, opamp, 
integrator, diode, rectifier, and transistor as button choices 
for one EMW; and comb drive, beam, anchor, folded 
flexure, hinge, point mass, and carbon nanotube as button 
choices for another EMW. E.g., see Figure 3. 

 
4. MODELING 

 

In this section we discuss our systematic modeling 
method, which reduces the modeler’s effort and readily 
accommodates systems subject to algebraic constraints.  

In our previous work with Sugar, we represented 
microsystems as a set of second order differential equations 
(ODEs) of the form, 

 

0extMq Bq Kq F+ + − =�� �     (1) 
 

where M , B , K  are the system mass, damping, and 
stiffness matrices, and extF  is the vector of externally 

 
Figure 3: GUI. The GUI components shown are: GCW 
(graphic configuration window), INW (interactive netlist 
window), and a couple of EMWs (element menu 
windows). Elements shown include a hinged mirror with 
slider, folded flexure, and gear-pair in a local frame.   

GCW 
INW

EMW 

  
 

  
Figure 2: Configuring drawplanes in the GCW. 2a-2c 
shows a 3-button-click sequence to configure a drawplane 
in 3D. 2d shows the placement of a resistor element on the 
drawplane, using 2 button clicks. The 2a-2d sequence took 
a user a couple of seconds.  

2a 

2b 

2c 
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applied efforts such as electrostatic, gravitational, 
noninertial, voltage, stress, etc. [2]. However, ODE solvers 
are typically not equipped to solve a system of differential-
algebraic equations (DAEs) [6], where the system mass 
matrix may be singular or zero. There are many complex 
microsystems that are amenable to DAEs, such as those 
comprising elements without inertia; elements with 
displacement-, flow-, dynamic variable-, or effort-
constraints; or elements with inequality constraints. 

The DAE form we use in PSugar is [7],  
 

* * T T
f f q ext q q f

d T D V F T
dt

μ κ∇ +∇ +∇ − = ∇ −Φ −Ψ   (2a) 

( )0 ,q t= Φ   vector of displacement constraints  (2b) 

( )0 , ,f q t= Ψ   vector of flow constraints  (2c) 

( )0 , , , ,e s f q tγ= Γ   vector of effort constraints  (2d) 

( )0 , , , , ,s e s s f q tγ= − Λ� �   vector of dynamic variables (2e) 
 

where ( )* , ,T f q t , ( ), ,D f q t , and ( ),V q t  are kinetic co-
energy, content, and potential; Φ , Ψ , Λ , and Γ  are 
displacement-, flow-, dynamic variable-, and effort-
constraints; ( )tμ  and ( )tκ  are Lagrange multipliers; 

vector ( )q t  represents generalized displacements such as 
the change in translation, rotation, charge, volume, entropy, 
etc. Comparing (2a) to (1), each term on the left-hand side 
of (2a) has the same meaning as each term in (1), 
respectively; and vector f q= �  is flow. However, (2a) 
allows kinetic co-energy to be a function of q  and allows 
the dynamics to be constrained. Since vectors μ  and κ  are 
additional unknowns, relations (2b) and (2c) are required 
additional equations. (2d) is included to allow for effort eγ  
constraints. And (2e) is included to allow for relations that 
are not represented within the energy functions; e.g., time 
derivatives of flow s dq dt=� �  or time integrations of 

displacement s q dt= ∫ , etc.  
Systematic modeling in PSugar is as follows. Each 

element has a representative parameterized model function 
containing its energy functions, constraints, and efforts. 
E.g. a linear 2-node, 12-DOF flexure model function 
returns the symbolic scalar 1 12 12 12 12 11

2iV q K q× × ×= . The 

assembler sums all energy functions, e.g. 
1

N
ii

V V
=

= ∑ , then 
substitutes the functions into (2a)-(2e) for symbolic 
differentiation. Hence, in PSugar the modeler’s effort is 
reduced to simply providing energy functions, constraints, 
and efforts. The common practice of rigorously 
manipulating a model into a particular form is eliminated.  
 

5. SIMULATION 
 

In general, the solution of a DAE involves solving a 
nonlinear algebraic equation at each time step.  

For instance, applying linear approximations to (2), 
such as ( )1 1 1n n n nq q q h+ + +≈ −� , Euler’s method yields  
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where h  is the step size in time, 2 *
fM T= ∇ , Qϒ = −  

( ) ( )* * *
f f q q fq t
T f T T V D∇ − ∇ +∇ −∇ −∇ , and the Jacobian 

1nF y +∂ ∂  can be evaluated using finite differences. There 
are several pubic domain solvers available for DAEs [6]. 
The choice of solver usually depends on the differential 
index of the DAE; that is, the minimum number of times 
that some or all of the equations would need to be 
differentiated in time to determine its underlying ODE. 
However, using an ODE solver to solve the resulting 
underlying ODE is not preferred, because the solution 
trajectory often drifts from the solution manifold that is 
defined by the explicit constraints in the original DAE. 
Methods such as BDF (Backward differentiation formula) 
and IRK (implicit Runge-Kutta) improve Euler’s method by 
using higher-order approximations for 1nq +� , 1nf +

� , and 1ns +� , 
and using variable step sizes. 

Since Matlab’s ode15s and ode23t solvers are only for 
index-1 DAE systems, we do not use them to directly solve 
(2), because its index can be as high as 3. Currently, we use 
any one of a collection of public domain high-index DAE 
solvers. Future work includes developing a DAE solver that 
exploits our particular DAE structure.  

 
6. EXAMPLE 

 

To exemplify our methodology, we simulate a 
microsystem similar to one that was developed by Sandia 
National Labs (Figure 5). We chose this particular system 
as an example because it is difficult model and simulate 
using conventional tools [8]. Multidisciplinary elements of 
the microsystem comprise resistors, capacitors, voltage 
sources, mechanical flexures, hinges, sliders, gears, and 
electrostatic comb drives. Its representation in PSugar is 
shown in Figure 6. We configure the system using both the 
GUI and netlist (e.g. the repetitive comb fingers). The 
system is represented by 4601 degrees of freedom. Using a 
Pentium-4, 3GHz processor with 1GB RAM, our BDF 
DAE solver averages 1.4 seconds per step in Matlab.  

Identical ramp voltages applied to the two orthogonal 
sets of comb drives rotate the smallest gear counter-
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clockwise 2π∼  radians. As the voltage is removed, the 
system settles back to its initial state. See Figure 7. Slack 
between hinges and gear teeth are not modeled. The true 
geometry and material properties of actual microsystem 
shown in Figure 5 were not made available at the time of 
this writing. The actual friction in the hinges, gears, and 
slider are not known.  

 
CONCLUSION 

 

We presented a couple of design and modeling 
advancements toward an efficient system-level framework 
for complex engineered microsystems. Regarding design, 
we presented our interactive GUI that allows users to 
quickly and easily configure complex configurations; and 
we presented our powerful netlist language, which 
embraces the full flexibility and functionality of the Matlab 
language. Regarding modeling, we discussed the systematic 
method we use for representing complex, multidisciplinary 

components by their energy functions, constraints, and 
efforts. All code development was done in Matlab. 

Some of our future work will involve verifying the 
performance of complex systems (qualitative results were 
presented here), developing a solver that fully exploits our 
DAE structure, and enhancing our library with components, 
subsystems, and complete systems.  
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Figure 7: Transient analysis. Simulation of the 
configuration shown in Figure 6. A pair of linear voltage 
ramps applied across the two sets of orthogonal comb 
drives rotates the smallest gear a quarter turn. After the 
ramps end, the system settles back to its initial state. 

Gear rotation  
angle (rad) vs time (seconds) 

 
Figure 6: PSugar configuration. A close representation of 
the Sandia device from Figure 5 configured in PSugar. The 
red beam in the figure is a laser reflecting off the mirror. 
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Figure 5: A complex microsystem.  

Courtesy of Sandia National Lab 

Micromirror by Sandia 
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