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ABSTRACT  
 
Changes in cell dielectric properties caused by arsenic 

absorption were detected by means of cell velocity and a 
frequency causing the cell being repelled from an octa-pair 
interdigitated electrode. This study found that the velocity 
spectrum was affected by solution conductivity of which 
the cells were suspending during the experimentation. An 
abrupt change in the velocity pattern explained non 
homogeneous phase, cell wall and the plasmalemma, only 
if the solution conductivity was small. There was a slightly 
shift of velocity spectrum towards a lower frequency value 
with respect to the pretreated arsenic levels. Utilizing our 
previous Laplace and RC models, curve-fittings with the 
experimental data revealed that the membrane conductivity 
was increased with the arsenic levels. Although, arsenic up 
to 100 ppm prevented cell growth but the velocity spectrum 
remained similarly to the living cell.  
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1 INTRODUCTION  
 

Traveling wave dielectrophoresis has shown potential 
applications in medical diagnostics, drug delivery and cell 
therapeutics in terms of selectivity, isolation, concentration, 
purification and separation of bio-particles mixtures [1, 2]. 
Previous studies were reported using a planar linear 
interdigitated electrode of one array [1, 3, 4] or two parallel 
arrays [2, 5, 6], and the driven electric field was generated 
by sinusoidal quadrature-phase voltages. A phase sequence 
addressing to the electrodes had been described in details 
elsewhere [1, 3, 4, 5, 6]. For two parallel arrays interdi- 
gitated electrode (TPI), the Clasius-Mossotti factor (CMF) 
composed of real [Re(CMF)] and imaginary [Im(CMF)] 
function (see Fig. 1) is governed by complex conductivity 
and permittivity of the cell related with cell medium. These 
functions are frequency dependent and hence might affect 
the cell by either collecting it at the TPI or pushing it - 
 

 

 
 
 

Figure 1: Theoretical plots for real [Re(CMF)] and 
imaginary [Im(CMF)] part of the CMF.  

 
 
through electrode central channel, respectively. The 
negative value of the real function results in cell being 
repelled from the electrode, representing by a negative 
velocity, and vice versa. This allows cells with different 
properties could be separated by means of an appropriate 
frequency range. However, when dielectric values were 
predicted, it was time consuming and the model used was 
questionable, particularly when an ellipsoidal cell was 
tested. Therefore, our laboratory has investigated for a 
simpler method, suitable for cell technologists.  

Mathematical model has further extended using 
Laplace method to explain cell velocity and RC methods to 
express two critical frequencies (Sakshin et. al., to be 
published). With the RC model, increasing the conductivity 
of cell suspending medium causes the two frequencies to 
converge and, finally, join at a critical conductivity, of 
which the cytoplasmic conductivity is revealed. This work 
observes cell velocity over a spectrum of field frequency 
and detects the two cross over values ( , ).  
Phytoplankton with several arsenic pretreatment was  used 
as a test model.   
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spectra shows a bell shape with a plateau value of 5.2, 4.4, 
and 3.5μ m.s-1, respectively. The frequency dependence 
velocity extends from 500 kHz to 30 MHz or more, since 
close to zero velocity at the higher critical frequency  is 
not found in all cases. The lower critical frequency  is 
shifted to a higher value at 200, 300, and 500 kHz with 
respect to the increased

hf

lf

sσ . Fig. 3b shows that the velocity 
is proportional to the electric field while the  is 300 kHz, 
independent of the increased field. This is also true for the 
higher 

lf

sσ used. Increasing the field strengths further 
increases the peak velocity to 29μ m.s-1. This study found 
that minimum field should not be less than 28 kV.m-1 
otherwise the velocity would be uncertain and rather 
difficult to measure. Fig. 3c shows that changing the cell 
density from  cell/m  to cell/m  have 
no effect on the velocity spectrum. This confirms that 
electric field strength during experimentation was not 
affected by the presence of neighboring cells.    

5100.4 ×

lf
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3.2 Arsenic Pretreatment 
 
      Velocity spectra of arsenic pretreated cells in Fig. 4a 
shows that greater arsenic content in the cells shifts  
towards a lower value while the peak velocity is not 
affected. Those lines are drawn to fit the experimental data, 
using the appropriate values of dielectric parameters, to 
verify our previous Laplace model. It appears that the 
frequency shifting to the lower value is caused by the 
arsenic and possibly causes pore blockage and, hence, 
increasing its electric permittivity. This result is in 
consistency with the vs.

lf

sσ plots, using our RC model  in 
Fig. 4b, since the same parameters were utilized fro curve 
fittings.  Theoretically, it shows the same single  line, 
regardless of arsenic content. Noted that at 0.25 S.m-1, the 
cell velocity was 4 μm.s-1 and further reduced towards a 
negligible value when 0.35 S.m-1 solution was used. This 
implied that critical conductivity of Tetraselmis sp. is 0.35 
S.m-1, indicating the conductivity of cytoplasm. Our 
previous results [9] showed that arsenic pretreatment also 
increased the membrane conductance similar to what found 
in dead cells, and cell proliferation ceased when the arsenic 
reached 100 ppm level (see Fig. 5). An experiment using 
dead cells showed that the  diminished from the velocity 
spectrum. It is, therefore, ascertained that these arsenic 
pretreated cells are still alive, and the cessation of cell 
growth could be due to some difficulties in taking up 
nutrients from its environment. Normally, dead cells 
possess large membrane conductance, while the increased 
membrane conductance in this case is caused by an arsenic 
accumulation in the membrane.   
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Figure 3: Velocity spectrum (a) effect of the conductivities 

of the suspending medium (b) effect of the electric field 
strengths and (c) effect of cell densities.  
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4 CONCLUUSIONS 
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