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ABSTRACT 
 
We have developed a one-dimensional tumor simulator to 
describe the biodistribution of chemotherapeutic drugs to 
a tumoral lesion and the tumor cell’s response to therapy. 
A three-compartment model is used for drug dynamics 
within the tumor. The first compartment represents the 
extracellular space in which cell move, the second 
corresponds to the intracellular fluid space (including cell 
membrane) which is in direct equilibrium with the 
extracellular space, and the third is a non-exchangeable 
compartment that represents sequestered drug which is 
trapped in the nucleus to damage the cellular DNA 
directly triggering cell death. The analytical and 
numerical techniques (Finite Element Method) are used to 
describe the tumor’s response to therapy and the effect of 
parameter variation on the drug concentration profiles in 
three compartments. 
Keywords: Tumor, Drug accumulation, Finite Element 
Method. 
 

1. INTRODUCTION 
 

Cancer is an important societal and scientific 
problem. Vast sums of human and material resources are 
spent in attempts to understand its root causes and to 
develop successful treatments and prevention strategies 
[1]. A major cause of the failure of chemotherapeutic 
treatments for cancer is the development of resistance to 
drugs. One of the major challenges that prevent most 
patients from benefiting from chemotherapy is the 
presence of tumor cell mechanism that causes drug 
resistance. A tumor may evolve mechanisms to avoid 
damage by chemotherapeutic agents via the acquisition of 
mutations that confer a drug-resistant status. Jackson et al. 
[3] proposed a promising two-step approach that is 
designed to minimize systemic drug toxicity while 
maximizing activity in tumors employs monoclonal 
antibody enzyme conjugates for the activation of anti-
cancer prodrugs. 
In this paper, we have proposed a spatio-temporal model 
that describes tumor response to sequestered, intracellular 
drug treatment and also analyze the biodistribution of the 

drug and to measure its influence on a growing population 
of tumor cells by Finite Element Method using Matlab. 

 
2. MATHEMATICAL FORMULATION 

 
The tumor is viewed as a densely packed, radially-
symmetric sphere of radius )(tR containing a rapidly 

dividing population ),( trp (cells per 3mm ) that is 
highly susceptible to the drug. Cell movement is produced 
by the local volume changes that accompany cell 
proliferation and death. It is convenient to associate with 
such movement a local cell velocity ),( trυ . The 
spheroid expands or shrinks at a rate, which depends upon 
the tumor volume, the latter term being modified by the 
presence of the drug. It is assumed that the spatially 
dependent variables depend only on the radial distance 
from the center of the tumor [4]. 
A three-compartment model is taken into account for drug 
dynamics within the tumor. The first compartment 
represents the extracellular space in which cells move, the 
second compartment corresponds to the intracellular fluid 
space (including the cell membrane), which is in direct 
equilibrium with the extracellular space, and the third is a 
non-exchangeable compartment that represents 
sequestered drug which is trapped, perhaps in the nucleus, 
where it begins to damage the cellular DNA directly 
triggering cell death. The drug concentrations in 
extracellular space, intracellular fluid space and in the 
nucleus are represented by 21 , NN and 3N respectively. 
As in [5], the governing equations for drug concentrations 
in three compartments and the tumor population by 
applying the conservation of mass as follows: 

( ) ( ) ( )( ) .2211121111
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In equation (1), D is the diffusion coefficient of the drug 
in the tumor tissue. The function ( )tN B is the prescribed 
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drug concentration in the tumor vasculature and 1ν  
represents capillary permeability-surface area product per 
unit volume, which is the rate coefficient of blood-tissue 
transfer, which is assumed constant. 12µ  and 21µ are 
compartmental transfer coefficients representing the rate 
of flow from the extracellular compartment and to the 
intracellular compartment and vice-versa. 23µ  is the rate 
of drug transfer from the cystosol to internal organelles. 
The changes in tumor cell density assume a monoclonal 
tumor population as follows: 

( ) .
0

3 pp
N
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pDp
t
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DMP λλυ −+∆=⋅∇+
∂
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where Dλ  is a death term by apoptosis that depends on 
the local levels of chemotherapeutic agent (e.g. 
nanoparticles, drug molecules) [2]. It is assumed that the 
tumor tissue is saturated with growth factors, and that 
nutrient availability limits cell proliferation, therefore the 
fraction of cycling cell is taken into account by 

0

3

N
N , 

where 
3N will not exceed 

0N . Mλ  is the cell mitosis rate 
and 

PD is the assumed constant random motility 
coefficient of the tumor cells. 
Tumor cell proliferation leads to motion of the cells and 
growth of the overall tumor. It is assumed that cell mass 
density is uniform in the tumor, the local specific mass 
growth rate is the divergence of the tumor cell’s velocity 
field ‘u ’ and is given by 

.
0

3
DM N

N
λλυ −=⋅∇     (5) 

In order to access the tumor’s response to the 
chemotherapeutic treatment, it will be necessary to follow 

the evolution of the tumor volume ( ( ) 3

3
4 Rπ= , for 

radial symmetry), or equivalently the tumor )(tR [4]. 
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The initial and boundary conditions are  
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( ) ( ).),(1 tNttRN R=      (7) 

0R  is the initial tumor cell radius and by symmetry, at 

0=r , there is no amount of drug and the local velocity 
is zero. ( )tN R  is the drug concentration on the tumor 
boundary (i.e. in the surrounding normal tissue). the 
parameter values 2112 ,µµ and 23µ indicate that the drug 
leaves (or re-enters) the extracellular space far more 
slowly than it enters organelles. However, the drug re-
entered the intracellular space may be enhanced due to 

over expression of P-glycoprotein drug efflux pumps. So, 
we take 2112 ,µµ and 23µ as variable parameters. 

 
3. NON-DIMENSIONALIZATION 

 
We rescale the mathematical model in the following 
manner, denoting non-dimensional variables with bars: 
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Dropping the bars, the governing equations transform to 
give 
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Since there are two time-scales: 
(1) The tumor growth ( )Mλ  time-scale (i.e. per 
day). 
(2) The drug-diffusion 
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To the leading order with ,0=χ  the equation (8) 
becomes, 
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On solving we get, 

( ) ( ) ( )( ) ( )
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sinh
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ξ
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where 1νξ = . 
A tri-exponential decline function based on a three-
compartment model is used to describe the drug 
concentration ( )tN B  in the tumor vasculature [5]. 
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where 0N  is the concentration of drug in the plasma at 
time zero or the dose of drug administered divided by the 
plasma volume [20]. The drug concentration in the 
normal tissue, ( )tN R , is assumed of the form as follows: 
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Since the tumor surface is a moving boundary, so we 
transform the region ( ){ }tRr ≤≤0  into the fixed 

region { }10 ≤≤ ζ  by ( ) ( )tR
rtr == ,ζζ  and set 

( ) ( ) 3,2,1,,,~ == itrNtN ii ζ , ( ) ( ) .
)(
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Dropping the tildes of ( )tNi ,~ ζ  and ( )t,~ ζυ  for 
notations convenience, the equation (9), (10), (12) and 
(15) becomes, 

( ) ( ) ( )( ) ( )
( ) ( ).

)sinh(
)sinh(,1 tN

tR
tRtNtNtN BBR +−=

ξζ
ζξζ (17) 

( ) ( )[ ]

( ) .

,1,

232321112

22

NNN

Ntt
t

N

Dλµµµ
ζ

ζυζυ

−++−

=
∂
∂

−+
∂
∂

  (18) 

 

( ) ( )[ ]

( ) .

,1,

33223

33

NNN

N
tt

t
N

Dλµ
ζ

ζυζυ

−−

=
∂
∂

−+
∂
∂

  (19) 

 

( )( ) .,1
3

2
2 DNt λζυζ

ζζ
−=

∂
∂

   (20) 

and  ( ) ( ) ( ).,1 ttR
dt

tdR υ=    (21) 

For ,1,0=ζ  we have ( ) ( )[ ] .0,1, =− tt ζυζυ  
We have solved the equations (17)-(19) by Finite Element 
Method using Matlab. 
 
 

4. RESULTS AND DISCUSSION 
 
The spatio-temporal dynamics of drug concentrations in 
three compartments and the effect of different parameters 
are studied using Finite Element Method (with 100 
elements) and simulated using Matlab. 
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Figure 1. 
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Figure 2. 
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Figure 3. 
 
Figure (1), (2) and (3) show the profiles of different drug 
concentrations in three compartments. From figure (1) 
and (2), we can see that as the time increases, the drug 
concentration decreases in the extracellular space and the 
intracellular fluid space but there is an increase or we can 
say that there is an accumulation of drug in the third non-
exchangeable compartment that represents sequestered 
drug which is trapped in the nucleus. 
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Figure 4. 
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Figure 5. 
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Figure 6. 
 
Figures (4), (5) and (6) represent the effect of various 
transfer coefficients ),,( 232112 µµµ on the tumor 
growth. From figure (4), it is clear that the tumor growth 
is greatly affected by a small change in the cellular 
permeability 12µ . So it is the most important cause of 
drug accumulation, which further induces drug resistance, 
which is consistent with the result of Tao [6]. Figure (5) 
shows that 21µ  (drug efflux rate) has a small effect on the 

tumor growth if 784.2621 pµ  and has a large effect if 

20021 fµ  i.e. 21µ  is very large. Also figure (6) shows 

that drug sequestration rate 23µ  has a small effect on the 

long time response of tumor growth if 08.4623 fµ  and 

has a large effect if 4023 pµ . The baseline parameter 

values (non-dimensionalized) used are 4032.012 =µ , 

026784.021 =µ  and 8.46023 =µ  for the typical 
parameter values given in [5]. 
From above, it is clear that cellular permeability 12µ  has 
more influence on the model in comparison to drug efflux 
rate 21µ  and the drug sequestration rate 23µ . Also it is 
found from the simulation of the model that there is no 
significant reduction in the tumor radius if we increase the 
initial doses of the drug to the tumor. It satisfies the fact 
that there is no benefit of giving large initial doses to the 
patient in comparison to the required dose (because its 
transfer to intracellular fluid space depends upon the 
parameter 12µ ). However the multiple round treatments is 
a better option to provide more drug inside the tumor to 
control its growth. 
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