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ABSTRACT

Quantum theory has found a new field of application in 
the information and computation fields during recent years.
We developed a Quantum Gate Simulator based on the 
Digital Signal Processor (DSP) DSP TI6711 using the
Hamiltonian in the time- dependent Schrödinger equation. 
The Hamiltonian describes the Quantum System by 
manipulating a Quantum Bit (QuBit) using unitary 
matrices. Gates simulated are conditional NOT operation, 
Controlled-NOT Gate, Multi-bit Controlled-NOT Gate or 
Toffoli gate, Rotation Gate or Hadamard transform and
twiddle gate, all useful in quantum computation due to their 
inherently reversible characteristic. With the simulation 
process, we have obtained approximately 95% fidelity
action of the gate on an arbitrary two and three QuBit input 
state. We have determined an average error probability 
bounded above by 0.07 ± 0.01.

1 INTRODUCTION

The basic unit of storage in a quantum computer is the 
qubit. A qubit is like a classical bit in that it can be in two 
states, zero or one. The qubit differs from the classical bit in 
that, because of the properties of quantum mechanics, it can 
be in both these states simultaneously [1, 2].A convenient 
method for representing a qubit state is the ket notation

defined by Dirac [3]. In this notation the ket 0 denotes 

the zero state and the ket 1 represents the one state. This 

notation is convenient because it labels the qubit state, and
therefore only those states with non zero amplitude need to 
be explicitly written.

A quantum computer performs operations on qubits, 
whose value can be one or zero or any superposition of one 
and zero. A quantum computer performs transformations on 
these qubits to implement logic gates. These quantum logic 
gates create correlations between qubits, referred to as 
entanglement, which allows the representation of an 
exponential number of states using a polynomial number of 
qubits. Combinations of these logic gates define quantum 
circuits. 

All operations in a quantum computation are achieved 
by means of transformations on the qubits contained in 

quantum registers. A transformation takes an input quantum 
state and produces a modified output quantum state.

Typically transformations are defined at the gate level, 
i.e. transformations which perform logic functions. 
Transformations that correspond to physical processes can 
also be defined. These lower level transformations are then 
composed so that they implement gate operations.

Because of the laws of quantum mechanics each 
transformation of the quantum state space, other than a 
measurement, must leave the quantum superposition of the 
state intact. More specifically each transformation must be 
unitary.

2 METHODOLOGY

For the development of the project, we use the DSP, like
the TI TMS6711, with architectural optimizations to speed up 
processing. This DSP can be connected on classical personal 
computer for transfer the data between them, and the 
architectural features is the next:

Program flow:
• Floating-point unit integrated directly into the data-path.
• Pipelined architecture
• Highly parallel accumulator and multiplier
• Special looping hardware. Low-overhead or 

Zerooverhead looping capability

Memory architecture:
• DSPs often use special memory architectures that are 

able to fetch multiple data and/or instructions at the 
same time:

• Harvard architecture
• Use of direct memory access
• Memory-address calculation unit

A quantum logic gate is a transformation which 
performs a logic function on the input state and produces a 
new output state[6]. Circuits are constructed as sequences 
of these gates in the same manner as is used in conventional 
digital circuits. The gates that perform a conditional “not 
operation” are useful in quantum computation because they 
are inherently reversible. A single bit gate performs an 
unconditional not operation, and multibit-gates negate the 
resultant bit conditionally based on the input bits.
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2.1 Controlled NOT gate

A reversible version of a conventional exclusive or gate 
is constructed by retaining the value of one of the inputs. 
This gate, called the controlled-not gate [5], is defined by 
the truth table shown in Table 1. 

Table 1: truth table for controlled not gate 

The controlled-not gate leaves the qubit unchanged and 
flips the value of only if is set. The controlled-not gate can 
be reversed by performing another controlled-not gate.  The 
logic symbol for this gate is shown in figure 1.

Figure 1: Logic symbol for the controlled not gate

 (1)

The matrix 1 show the transformation of the logic 
controlled not gate. 

2.2 Multi-bit Controlled-not Gates

Multi-bit controlled-not gates are defined by adding 
additional controlled inputs. The resultant bit is only flipped 
if the logical AND of all the input qubits is one. These 
multi-bit gates are useful in the construction of logic 
circuits because of this AND property. Figure 2 shows the 

logic symbol for the three bit controlled-controlled not gate. 
This gate is also called the Toffoli gate after its designer 

[6]. It transforms the state 011 to 111 and the state

111  to 011 leaving all other states unchanged. 

Figure 2: Logic symbol for the multi controlled not gate.

2.3 Rotation Gates

The Hadamard transform is a single bit rotation gate. 
The matrix 2 shows its definition. The logic symbol used in 
circuit diagrams is shown in Figure 3. The Hadamard 

transform applied to a qubit that is in the state 0  creates a 

state that is in the equal superposition of the 0  and 

1 states. The Hadamard transform is also used in the 

encoding and error correction circuits.

(2)

Figure 3. The Hadamard transformation

2.4 Twiddle Gates

The quantum FFT circuit requires an additional gate, the 
twiddle gate shown in the matrix 3. A twiddle is performed 
between two bits, denoted by the bit positions and as part of 
an FFT performed across L qubits.

(3)
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3 RESULTS AND DISCUSSION

In the figure 3, we show the simulation for the entropy 
on gate C-Not.

Figure 3: Entropy for C-Not gate

In the figure 4, we presents the fidelity for C-Not gate. 
In the matrix 4, we show the density matrix for C-Not gate, 
while in the matrix 5 we represent the matrix density for 
Hadamard gate.

Figure 3: Fidelity for C-Not gate

Classical computation theory began for the most part 
when Church and Turing independently published their 
inquiries into the nature of computability in 1936 [7]. For 
our purposes, it will suffice to take as our model for 
classical discrete computation. So we are able to simulate 
the possible quantum processor using different gates and 
approach to the development of the Von Neuman Model[8]. 

The next step of this project is to integrate different 
gates and emulate as the classical components of the VLSI 
that integrated the classical semiconductor.

 (4)

The central problem that we will concern ourselves with 
repeatedly in these notes is the problem of universality. 
That is, given an arbitrarily large function f, is it possible to 
identify a universal set of simple functions that can be used 
repeatedly in sequence to simulate f on its inputs.

(5)
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4 CONCLUSIONS

Hamiltonian (21) is sufficiently generic to represent
most models for candidates of physical realizations of 
quantum computer hardware. The spin-spin term in Eq. (3) 
is sufficiently general to describe the most common types of 
interactions such as Ising, anisotropic Heisenberg, and 
dipolar coupling between the spins. Furthermore, if we also 
use spin-1/2 degrees of freedom to represent the 
environment then, on this level of description, the 
interaction between the quantum computer and its 
environment is included in model. In other words, the 
Hamiltonian (3) is sufficiently generic to cover most cases 
of current interest.
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