Two-nozzle flame synthesis of tailored Pt/Ba/Al$_2$O$_3$ nanoparticles for NO$_x$ storage-reduction

R. Strobel ***, M. Piacentini **, M. Maciejewski **, A. Baiker *, S. E. Pratsinis **

* Particle Technology Laboratory, ETH Zurich, CH-8092 Zurich, Switzerland, pratsinis@ptl.mavt.ethz.ch
** Institute for Chemical and Bioengineering, ETH Zurich, CH-8093 Zurich, Switzerland

ABSTRACT

NO$_x$ storage reduction (NSR) catalysts are applied for the abatement of NO$_x$ from engines operating under lean conditions, where conventional TWC catalysts are inefficient. Here, a novel two-nozzle flame spray pyrolysis (FSP) process was developed for one-step synthesis of Pt/Ba/Al$_2$O$_3$ NSR catalysts, which conventionally are prepared by wet-phase processes. The use of two nozzles separating the formation of Al and Ba resulted in the formation of individual BaCO$_3$ and Al$_2$O$_3$ nanoparticles well-mixed at the nano level [1]. In contrast, amorphous Ba species dispersed over the Al$_2$O$_3$ particles were formed by the conventional single nozzle FSP process. NO pulse experiments revealed no NO$_x$ storage capacity for Pt/Ba/Al$_2$O$_3$ made with one nozzle, but good storage on the catalysts made with two nozzles. In contrast to impregnated Pt/Ba/Al$_2$O$_3$, higher Ba loadings even increased the relative amount of Ba involved in the NO$_x$ storage process. This can be attributed to the absence of HT-BaCO$_3$ in flame-made catalysts [2].

Keywords: flame synthesis, catalysis, nanoparticles, NO$_x$ storage reduction

1 INTRODUCTION

The Pt/Ba/Al$_2$O$_3$ material is of particular interest as NO$_x$ storage-reduction catalyst (NSR) for engines operating under lean conditions [3, 4]. A decade ago, Toyota proposed the NO$_x$ storage-reduction concept (NSR) for the NO$_x$ abatement of lean-fuel engines [5]. According to the NSR concept, NO$_x$ is stored under lean conditions in the form of alkali or alkaline-earth nitrates (in particular Ba(NO$_3$)$_2$) and reduced over a noble metal into N$_2$ during fuel rich periods [6]. Generally these catalysts are prepared by wet impregnation of an alumina support from aqueous solutions of barium and platinum precursors [6]. Recently it has been shown, that different Ba phases of impregnated materials strongly affect the NO$_x$ storage capacity of Pt/Ba/Al$_2$O$_3$ and BaCO$_3$ decomposing at low temperatures, the so-called LT-BaCO$_3$ has been identified as the most active Ba species in the NO$_x$ storage process [7, 8].

Flame aerosol and in particular flame spray pyrolysis technologies are versatile and continuous processes for production of a variety of ceramic nanoparticles [9-11]. Compared to the conventional single nozzle setup during FSP [11], the present stereoscopic two-nozzle setup adds further flexibility for the control of important flame parameters, such as temperature and concentration fields, that affect particle formation, and affords excellent control of particle mixing at the nano level in multicomponent systems. Here we show how a two-nozzle system can be beneficially used to control the structure of Pt/Ba/Al$_2$O$_3$ catalysts leading to enhanced NO$_x$ storage behavior. Structural properties and behavior in NO$_x$ storage reduction is further compared to Pt/Ba/Al$_2$O$_3$ catalysts prepared by conventional impregnation technique.

2 EXPERIMENTAL

Figure 1 depicts the current two-nozzle flame spray pyrolysis setup. A combustible Al-precursor solution is fed into the left 2-phase spray nozzle (blue flame) whereas a combustible solution containing a Ba and Pt precursor is fed into the right nozzle (yellow flame).
Both precursor solutions were dispersed by oxygen and ignited by surrounding flamelets. After evaporation and burning of the precursor, particles are formed by nucleation, condensation, coalescence and coagulation. The position of mixing of Al and Ba particles was adjusted by varying the off-center distance (d) of the nozzles stereoscopically. The angle of the two nozzles was constant at 120°.

These flame-made catalysts were analyzed by X-ray diffraction, electron microscopy, nitrogen adsorption, temperature programmed decomposition, CO pulse chemisorption and CO-FTIR. Behavior during NOx storage and reduction was measured thermo-gravimetrically by NO pulse technique [8] as well as in a fixed bed microreactor by switching between lean (667ppm NO, 6.67% O2, 3 min) and rich (667ppm NO, 1334ppm C3H6, 1min) conditions. Structural properties and catalytic activity was compared to a standard impregnated Pt/Ba/Al2O3 catalyst [8].

3 RESULTS AND DISCUSSION

3.1 Structural Properties

![TEM Images](image)

Figure 2: TEM images of Pt/Ba/Al2O3 prepared with two nozzles FSP. The corresponding mapping of Ba is shown as on the bottom.

The applied two nozzle flame spray pyrolysis process resulted in the formation of individual Al2O3, BaCO3 and Pt particles as desired for NSR catalysts. Figure 2 shows TEM images with corresponding elemental mappings of Ba for a catalyst prepared with two-nozzles or conventionally with one nozzle. It clearly shows the different distribution of Ba. The mixing of the two flame plumes after formation of Al2O3 and BaCO3 particles resulted in a mixing of individual nanoparticles, whereas the one-nozzle process gave more a molecular mixing of Al and Ba species.

This distinct difference between one- and two-nozzle made catalysts is also revealed by measuring the amount of CO2 evolved during thermal decomposition of BaCO3. For the material prepared with one nozzle only evolution of CO2 due to physically adsorbed CO2 could be observed. In contrast by placing the two nozzles further away, or in other words mixing the two flames at a later stage during particle formation resulted in the formation of BaCO3 as seen by CO2 evolution above 500 °C. Adjusting the nozzle geometry allowed a precise control of the amount of BaCO3 formed.

Figure 5 (left) shows the different species of BaCO3 in flame-made and impregnated Pt/BaCO3/Al2O3 catalysts with different Ba loading. It has been found earlier, that there exist two different BaCO3 species when dispersed on Al2O3. One is the so-called LT-BaCO3 decomposing at low temperatures (< 900°C) the other behaves like bulk BaCO3 and decomposes at temperatures above 900°C. In the flame-made catalysts only LT-BaCO3 existed independent of the Ba loading, which stands in clear contrast to the buildup of HT-BaCO3 in the impregnated catalysts at higher Ba loadings. This is an important difference as LT-BaCO3 is the most active phase for NOx storage as shown earlier.

3.2 Catalytic Behavior during NSR

The behavior during NOx storage was measured thermogravimetrically by injecting NO-pulses in an O2/He stream. Figure 3 shows the weight gain during these experiments for flame-made catalysts prepared with one and two nozzles. It clearly shows the very low storage capacity of the material prepared with one nozzle with only a very little weight gain due to stored NOx. In contrast the catalyst prepared with two nozzles stored a significant amount of NOx in the form of Ba(NO3)2.
Comparing now the catalysts with two nozzles to a standard impregnated catalyst revealed a much faster NO\textsubscript{x} uptake for the flame-made catalysts. This is exemplarily shown in figure 4 for catalysts with a high Ba loading. Recalling now the presence of different BaCO\textsubscript{3} species in these catalysts (Fig. 6) clearly shows the advantage of the high amount of LT-BaCO\textsubscript{3} in the flame-made catalysts and confirms earlier observations. This is further reflected in the NO\textsubscript{x} storage capacity of the catalysts taking into account the amount of Ba involved in the storage process. This has been determined by decomposition of the previously formed Ba(NO\textsubscript{3})\textsubscript{2} and measuring the amount of evolved NO. Figure 7 depicts the NO\textsubscript{x} storage capacity for flame-made and impregnated catalysts as a function of the Ba-loading. In agreement with the formation of HT-BaCO\textsubscript{3} at high Ba loadings in the impregnated catalysts their NO\textsubscript{x} storage capacity decreased at high Ba loadings whereas for the flame-made catalysts the NO\textsubscript{x} storage capacity steadily increased with higher Ba loadings.

Additionally NO\textsubscript{x} storage and reduction was tested in a fixed bed reactor by switching several times between lean and rich conditions. Figure 6 shows a comparison of flame-made and impregnated catalysts. During the storage phase (first 3 min) there was no NO\textsubscript{x} breakthrough in the flame-made catalysts whereas breakthrough of NO\textsubscript{x} was observed on the impregnated catalysts. This is in agreement with the faster NO\textsubscript{x} uptake in flame-made catalysts as discussed before. Figure 6 further shows that both catalysts were able to release and reduced the stored NO\textsubscript{x}. Taking into account the storage and reduction phase the flame-made catalysts exhibited a higher NO\textsubscript{x} conversion under the tested conditions.

4 CONCLUSIONS

A novel two-nozzle flame spray pyrolysis (FSP) process was developed for one-step synthesis of Pt/Ba/Al\textsubscript{2}O\textsubscript{3} consisting of individually crystalline BaCO\textsubscript{3} and Al\textsubscript{2}O\textsubscript{3} nanoparticles well-mixed at the nano level. In contrast, amorphous Ba species dispersed over the Al\textsubscript{2}O\textsubscript{3} particles were formed by the conventional single nozzle FSP process. The formation of individual BaCO\textsubscript{3} particles as achieved by the two-nozzle process was beneficial for the NO\textsubscript{x} storage behavior, whereas no NO\textsubscript{x} was stored on the single nozzle-made material. The amount of crystalline BaCO\textsubscript{3} could be controlled by varying the internozzle distance or in other words the point of mixing of the two flames. In contrast to impregnated catalysts, independent of the Ba loading the BaCO\textsubscript{3} nanoparticles decomposed at low temperatures (LT-BaCO\textsubscript{3}) compared to bulk BaCO\textsubscript{3}. This results in a faster NO\textsubscript{x} uptake during the storage process, a higher NO\textsubscript{x} storage capacity at high Ba loadings and a improved NO\textsubscript{x} conversion during lean-rich NSR cycles.
REFERENCES