
Compact modeling of drain current in 
Independently Driven Double-Gate MOSFETs 

 
D. Munteanu, J.L. Autran*, X. Loussier, O. Tintori 

 
Laboratory for Materials and Microelectronics of Provence, L2MP-CNRS  

49 rue Joliot-Curie, 13384 Marseille, France 
*Also with Institut Universitaire de France (IUF), Paris, France 

E-mail: daniela.munteanu@l2mp.fr, Phone: +33 4 96 13 98 19, Fax: +33 4 96 13 97 09 
 
 

ABSTRACT 
 
A compact model for the drain current in Independently 

Driven Double-Gate (IDDG) MOSFETs is proposed. The 
model takes into account 2D electrostatics and vertical 
carrier quantum confinement in the channel. An extensive 
comparison with numerical data obtained using a full 2D 
quantum numerical code is performed. The model is shown 
to fit with a good accuracy numerically simulated quantum 
drain current in Double-Gate devices with either 
independent or connected gates.  
 
Keywords: Independently Driven Double-Gate MOSFET, 
drain current, quantum effects, short-channel effects 
 

1 INTRODUCTION 
 

As CMOS scaling is approaching its limits, Double-
Gate (DG) MOSFET is envisaged as a possible alternative 
to the conventional bulk MOSFET. In spite of excellent 
electrical performances due to its multiple conduction 
surfaces, conventional DG MOSFET allows only three-
terminal operation because the two gates are tied together. 
DG structures with independent gates have been recently 
proposed [1-4], allowing a four terminal operation. 
Independent Driven Double-Gate (IDDG) devices offer 
additional potentialities, such as a dynamic threshold 
voltage control by one of the two gates and 
transconductance modulation in addition to the 
conventional switching operation [1, 2]. Modeling the 
IDDG operation is a difficult task due to the influence of 
the second gate which can be independently switched. In 
addition, physical phenomena such as 2D electrostatics or 
carrier quantization have to be considered for ultra-scaled 
IDDG structures. In this work, we propose a compact 
model for the drain current in IDDG, which combines 
short-channel with quantum confinement effects in the 
channel. The model is continuous over all operation 
regimes. A 2-D quantum numerical simulation code [5] 
(solving the 2D Poisson equation self-consistently coupled 
with the 1D Schrödinger equation) is used for the model 
validation. Our model reproduces very well the threshold 
voltage and the current modulation by the back gate bias, as 
well as the quantum confinement effects on the inversion 

charge. It can be directly implemented in a TCAD circuit 
simulator for the simulation of IDDG based-circuits.  

 
2 DRAIN CURRENT MODELING 

 
Figure 1a shows the schematic of an IDDG structure 

with and the band diagrams in horizontal and vertical cross-
sections are illustrated in Figure 1b and 1c, together with 
the first energy subbands. The drain current modeling starts 
with the calculation of the 2D potential distribution in the 
device. In this work we assume the potential expression 
given by the equation: 
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where Ψ0 is the potential in the middle of the silicon film. 
Coefficients α and β are calculated as a function of Ψ0 
using the boundary conditions at the front and the back 
interfaces between the oxide and the silicon film: 
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where VFB1 and VFB2 are the flat band voltages of the front 
gate and of the back gate, respectively, ΨS1(x)=Ψ(x,y=0) 
and ΨS2=Ψ(x,y=tSi), are the surface potentials at the front 
and back oxide/film interfaces, respectively. Then, α and β 
are given by: 
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where γ = εSi/εox. The potential distribution includes the 
dependence on the front gate and back gate polarizations, 
VG1 and VG2. In equations (4) and (5) we have assumed (for 
simplification) that tox1=tox2=tox. However,  this  assumption  
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does not reduce the model generality, since similar 
development procedure can be applied in the case of front 
gate oxide and back gate oxide with different thicknesses. 
For calculating Ψ0 the Gauss’s law is applied to the 
particular closed dashed surface shown in Figure 1a (as 
demonstrated in [6, 7]): 
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In the right hand side, the first term corresponds to the 
depletion charge (NA is the channel doping) and the second 
term is the mobile inversion charge density, given by the 
integration of the electron charge over the entire Si film. 
For very thin films used in this work (<15nm), electric field 

E(x) can be approximated as 
dx
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following differential equation is obtained for Ψ0: 
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Ψ0 is then the solution of equation (7) given by: 
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where C1, C2, R(x) and m1 are calculated for filling the 
boundary conditions ΨS(x=0)=φS and ΨS(x=L)=φS+VD: 
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where NSD is the doping level in the source/drain regions.  
In equation (10) qi(x) is the mobile inversion charge 
density, which can be evaluated in two cases: 
(a) the classical case, considering a Boltzmann distribution 
for the carriers: 
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(b) the quantum case, where qi(x) is quantum-mechanically 
evaluated using the following equation: 
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*=0.19×m0, 
ml

*=0.98×m0, gl=2, gt=4, β=q/kT. In equation (14), Ẽi
l,t are 

the energy levels calculated using a standard method for 
first-order perturbation applied to the energy levels of an 
infinite rectangular well (as shown in [6, 7]): 

VG

0                                           L                   x

PE

E1
t

E1
l

EFS = 0

EFD

A-A

B-B

qVD

EFN = qVF(x)
EC(x)

y

A
A

B

B

EFN

qVG

EC

EFi

qΨ

qΨS

-tox

0

tSi

tSi+tox

qφS

qΨ0(x)

EFi(x)

xB-B

E1
t    E1

l

Source (NSD) Drain (NSD)tSi
VD

tox1

VG2

Front Gate (φM1)

Channel (NA)

Ε1

Ε(x+dx)Ε(x)

Ε2

tSi/2

x

y Back Gate (φM2)

tox2

VG1

VG

0                                           L                   x

PE

E1
t

E1
l

EFS = 0

EFD

A-A

B-B

qVD

EFN = qVF(x)
EC(x)

y

A
A

B

B

EFN

qVG

EC

EFi

qΨ

qΨS

-tox

0

tSi

tSi+tox

qφS

qΨ0(x)

EFi(x)

xB-B

E1
t    E1

l

Source (NSD) Drain (NSD)tSi
VD

tox1

VG2

Front Gate (φM1)

Channel (NA)

Ε1

Ε(x+dx)Ε(x)

Ε2

tSi/2

x

y Back Gate (φM2)

tox2

VG1

Figure 1: (a) Schematic description of Independently 
Driven Double-Gate MOSFET structure and its 

electrical and geometrical parameters considered in this 
work; the dashed area shows the closed surface for the 

application of the Gauss’s law; band diagram in 
horizontal (b) and vertical cross-sections (c) in the 

silicon channel and definition of the different 
parameters used in the model development. 

(a) 

(b) 

(c) 
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In (15) Ei
l,t are the energy levels of an infinite rectangular 
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and iii HE ϕϕ=∆ , where H is the Hamiltonian of the 

perturbation and φi are the electron wave functions 
associated to energy levels Ei

l,t. 
In equations (13) and (14), VF(x) is the electron quasi-

Fermi level, evaluated by a quasi-empirical expression 
inspired from [7, 8] and extensively verified by numerical 
simulation: 
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( ) ( )2FB2G1FB1G VVbVVb2n/m −+−+= , a = 0.2 nm-1, 

b = 0.05 V-1, c = 1 V-1. We introduce R(x) given by 
equation (10) in equation (8). This new expression of Ψ0(x) 
is then introduced in equation (14), together with equations 
(15) and (17). This leads to an implicit equation on qi(x), 
which is solved numerically for obtaining qi(x). 

The current density (including both the drift and the 
diffusion components) is expressed as: 

dx
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which is then integrated in the two y and z directions: 
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Current continuity requires Ids(x) be independent of x 
and integrating (19) in the x direction from 0 to L gives the 
final expression of the drain current: 
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In the case of classical calculation of the inversion 
charge (i.e. without quantum effects) and considering the 
Boltzmann distribution for the carriers, the drain current 
becomes [9]: 
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3 MODEL VALIDATION 
 
The model was validated by an extensive comparison 

with numerical simulation using a full 2-D Poisson-
Schrödinger code [5], adapted for independently driven DG 
MOSFETs. In a first step, we verified the potential 
distribution as given by equation (1). In a second step, the 
classical drain current expression has been validated by 
numerical simulation, for long channel devices and for film 
thicknesses from tSi=20nm down to tSi=5nm. We considered 
a constant mobility in equation (21). Figures 2a and 2b and 
Figures 3a and 3b show the comparison between the model 
and numerical simulation in an IDDG MOSFET with 
L=200nm and tSi=10nm. The drain current characteristics as 
a function of VG1 for both positive and negative VG2 
(varying from -1.2V to 1.2V with a step of 0.2V) are 
represented. The fit between the model and the numerical 
simulation is satisfactory. Figures 2 and 3 illustrate that our 
model reproduces very well the threshold voltage and the 
current modulation by the back gate polarization. The 
investigation of additional ID(VD) curves have shown that 
the model is valid in both linear and saturation regimes. The 
proposed compact model can easily be used to obtain all 
main performance indicators of IDDG devices, such as 
threshold voltage, subthreshold swing, DIBL, Ion and Ioff 
and their variation as a function of the back gate voltage. 

       

0
20
40
60
80

100
120
140

0.3 0.5 0.7 0.9 1.1 1.3
Front gate voltage VG1 (V)

VG2=0V

VG2= -1.2V

(0.2V step)

D
ra

in
 c

ur
re

nt
 (A

/m
)

Compact model
Numerical simulation

 

1E-13
1E-11
1E-09
1E-07
1E-05
1E-03
1E-01
1E+01
1E+03

0 0.2 0.4 0.6 0.8 1 1.2
Front gate voltage VG1 (V)

VG2=0V

VG2=-1.2V
(0.2V step)

D
ra

in
 c

ur
re

nt
 (A

/m
)

Compact model
Numerical simulation

 
Figure 2: Drain current given by the compact model 

(classical case) and comparison with numerical simulation 
in IDDG with tSi=10nm, tox=1nm and L=200nm. (a) Linear 

-linear scale and (b) linear-logarithmic scale. VD=0.1V. 

(a) 

(b)
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Figure 3: ID (VG1) for positive back gate voltage for the 

same device as in Figure 2. (a) Linear-linear scale and (b) 
linear-logarithmic scale. VD=0.1V. 
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Figure 4: Quantum model verification by numerical 
simulation in IDDG and DG (connected gates) with 

tSi=5nm, tox=1nm and L=50nm. VD=0.1V. 
 

The validation procedure was continued by an in-depth 
investigation of the model capability to take into account 
carrier quantization effects. The quantum drain current as a 
function of VG1 for different VG2 values is compared in 
Figures 4 and 5 with quantum numerical simulation. In 
Figure 4 the conventional DG structure with connected 
gates is also considered. A very satisfactory agreement is 
obtained between the model and the numerical simulation. 
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Figure 5: Drain current given by the compact model and 

comparison with numerical simulation for two values of the 
back gate voltage in IDDG. The simulated device is the 

same as in Figure 4. 
 

4 CONCLUSION 
 

We developed a compact model for the drain current in 
Independently Driven Double-Gate MOSFETs. The model 
combines 2D electrostatics with vertical quantum 
confinement effects, which makes it particularly dedicated 
to ultra-scaled devices expected at the end-of-roadmap. The 
model is based on an analytical expression of the 2D 
potential distribution in the channel, taking into account the 
quantum inversion charge. In order to validate the proposed 
model, an extensive comparison with quantum numerical 
simulation using a 2D Poisson-Schrödinger code was 
performed. The model is shown to reproduce very well the 
threshold voltage and the current modulation by the back 
gate polarization, as well as the carrier quantum 
confinement effects on the drain current. 
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