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ABSTRACT 
A closed form model for evaluating touch point pressure 
and pull-in voltage of clamped square diaphragm with 
residual stress is proposed. Square diaphragms are used in 
numerous applications.  The design parameters for all 
these structures are pull-in voltage and/or touchpoint 
pressure. The materials employed for fabricating 
diaphragms for these structures are p+ doped silicon, 
polysilicon, silicon nitride, polyimide etc. All these 
materials have residual stress, which influences the 
behavior of the transducer. In addition to this, a capacitive 
transducer may or may not employ an intervening layer of 
dielectric on the fixed electrode. Closed form expressions 
for evaluating touch-point pressure and pull-in voltage 
have been derived for such a structure by means of semi-
analytical model. The method proposed is less complex 
and less time consuming in comparison with FEM tools. 
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1. INTRODUCTION 

A MEMS capacitive sensor is basically an electrostatic 
transducer employing a parallel plate-structure that 
depends on electrical energy in terms of constant voltage 
(voltage drive) or constant charge storage (current drive) to 
facilitate monitoring of capacitance change due to an 
external mechanical excitation, such as force, acoustical 
pressure or acceleration [1].  The parallel plates comprises 
of one fixed electrode and the other deformable as shown 
in Fig 1.  An intervening layer of dielectric is used over the 
fixed electrode in transducers, which have touchmode 
operation, or to avoid electric short in electrostatic 
actuators at pull-in. The deformable electrode is usually a 
clamped diaphragm and can be fabricated using different 
materials and different geometries, such as, circular, 
square and rectangular. Square diaphragms are used in 
numerous MEMS structures because of better area 
efficiency and process capability using IC lithography [2]. 
Besides touch-mode capacitive pressure sensors [2], square 
diaphragms find use in numerous applications like 
electrostatic valve actuator for high-pressure applications 
[3], polysilicon micromirrors [4], silicon capacitive 
microphone [5], micropumps [6] and bio-medical 
applications [7]. Different materials used are boron doped 
silicon[8], polysilicon, Si3N4[9] and  polyimide[10]. All 
these materials are known to have  residual stresses.    The   

 residual stress affects the device behavior by influencing its 
touch-point pressure and pull-in voltage. The pull-in 
voltages of micro test structures can be used to extract the 
material parameters of thin films, such as Young’s moduli 
and residual stresses [11, 12]. Determination of the pull-in 
voltage is critical in the design to determine the sensitivity, 
instability in the operational range and the dynamics of 
devices. Accurate determination of the pull-in voltage is 
very challenging by virtue of the mechanical–electrical 
coupling effect and the nonlinearity of electrostatic force. 
Several methods like FEM(Finite Element Method), 
lumped model approach and solving coupled PDE’s  using 
numerical techniques are available to find the pull-in 
voltage[13]. Simple fast solutions are available for 
determination of pull-in voltage of cantilever beams, fixed-
fixed beams and circular diaphragms with excellent 
accuracies and can determine the pull-in voltage for the 
mentioned structures within 1% agreement with FEM   
results under certain limitations [11]. However, published 
analytical or empirical solutions to determine the pull-in 
voltage for square diaphragm predict pull-in voltage that 
show significant error when compared with the finite 
element analysis results or experimentally measured 
values[14]. Analytical model[14] based on a linearized 
uniform approximation model of the electrostatic pressure 
and a 2-D load deflection model under uniform pressure 
gives the expression of pull-in voltage by assuming that the 
pull-in occurs at a critical displacement equal to one-third 
of the gap between the electrode. A method is proposed in 
this paper to solve the fourth order partial differential 
equation by using a trial solution. The closed form 
expression of pull-in voltage and critical distance are the 
outcome of the solution. Another distinct feature of the 
method are that the deflection versus pressure graph depicts 
a  realistic situation as no further deflection takes place after 
touchpoint pressure is reached.  
 

2. THEORY 
For the plates with residual stress the governing equation 
is[18]  
 

( , ) ( , )D w x y h w x y Pσ∆∆ − ∆ =                                         (1) 
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 w(x, y) is the deflection at any point (x, y) of the  
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diaphragm, σ is the residual stress, h is the thickness of the 
diaphragm and P is the distributed pressure load. D   
flexural rigidity is given by 

3

212(1 )
D

Eh

υ
=

−
      where, 

 
 E is the Young’s modulus of the diaphragm material, h is 
the thickness of the diaphragm and υ is the Poisson’s ratio. 
In the presence of applied pressure and applied voltage eq. 
(1) is modified as  
 

( , ) ( , )
el

D w x y h w x y P Pσ∆∆ − ∆ = +                               (2)  

 
where, Pel is the electrostatic pressure and P is the 
mechanical pressure.  The electrostatic pressure Pel   is 
given as: 

20

02
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el d
P V

ε ε
=         (3)  

        
where, d0 is distance between the plates, εr is relative 
permittivity of the medium or the dielectric constant of the 
medium and ε0 is permittivity of free space. The 
diaphragm deflection w(x, y) with air as dielectric is given 
by considering that the distance d0 between the plates 
changes to (d0–w) due to the displacement w of the 
diaphragm in the presence applied pressure and voltage as 
shown in fig. 1.Substituting eq. (3) in eq. (2) for 
diaphragm without the intervening layer of dielectric, the 
equation becomes 

( , ) ( , )
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D w x y h w x y P Pσ∆∆ − ∆ = +                              (4)  

         
For diaphragm with intervening layer of dielectric 
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                                                                                        (5)                                                
.  
where d0 is  zero pressure gap, εa is the dielectric constant 
of the air, εi is the dielectric constant of the insulator  and  
 

tm is the thickness of the insulator. The equations (4) and (5) 
can be written in a generalized form  as  

20
2

0

( , ) ( , )
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eff
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d d w

ε
σ∆∆ − ∆ = +

+ −

                        (6) 
 
where deff = tm/εi   (for a single layer of dielectric)  and  
deff=0 for air  
   

3. SEMI-ANALYTICAL MODEL 

 
The boundary conditions for the square diaphragm with 
clamped edges are as follows 
   

 
0  0  

( , ) 0   ,

0, 0,   
w w

and at
x y

w x y at x a y a

x y x a and y a
∂ ∂

= =
∂ ∂

= = ± = ±

= = = ± = ±
 

  
where 2a is the side length of the diaphragm . The trial 
solution that satisfies the above given boundary conditions 
is 
  

    2 2 2 2 2 2
) )( , ) ( (a aw x y x yλ − −=                                  (7) 

 
The value of λ can be found out by the solving the 
following integral and equating the result to zero [15] 
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The above equation has no closed form analytical solution, 
and can only be solved numerically. Following 
methodology is used   to find the closed form solutions.  
Initially, there is no deflection, therefore w=0, hence the 
value of λ from eq.(8) is found as 
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Fig. 1 Structure of a capacitive pressure sensor 

NSTI-Nanotech 2007, www.nsti.org, ISBN 1420061844 Vol. 3, 2007158 



Evaluating ( , ) ( , )D w x y h w x yσ∆∆ − ∆ at x=0, y=0, i.e., at 

the center of the diaphragm with this value of λ, we have  
 

20
2

0

245
( , ) ( , ) (( )

144 2( )
eff

D w x y h w x y P V

d d

ε
σ∆∆ − ∆ = +

+
   (9) 

 
The eq.  (9) has to be modified to take into account the 
new electrostatic pressure every time a deflection w(x,y) 
takes place. Hence, the value of λ is re calculated by 
observing that at the center x=0, y=0, the following 
equation should hold good. 
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                                                                                        (10) 
Equation (10) gives a    third degree polynomial in λ at x=0 
and y=0, as given below   
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This equation has got three roots and only one of them 
gives a stable value. The value of λ is substituted in eq. (7) 
to get the deflection at any point (x, y) in terms of applied 
voltage, pressure and residual stress 
 
 

3.1 Pull-in Voltage 
Pull-in voltage is determined by differentiating the 
deflection w(x,y) at the center, i.e., at x=0, y=0 with 
respect to voltage at zero mechanical pressure and 
equating dV/dw  to zero. The critical distance is got by 
substituting the pull-in voltage for voltage V in expression 
for deflection. The closed form expression for pull-in 
voltage (Vpull) and critical distance wcr are  
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The results of the pull-in obtained from this model are 
compared with those obtained by simulation or reported 
experimentally in Table I. For a diaphragm with a = 1.2 
mm, h = 0.8µm, d0 = 3.5µm , ε0 = 8.85x10-12 F/m , E = 
169GPa, ν=0.3, σ=20 MPa, fig 3 shows the comparison of  

deflection with voltage 

Fig 3. The pull-in voltage  from the model. 
Pull-in voltage is represented by
discontinuity in the graph
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3.2 Touch-point pressure 
Touch-point is defined as the pressure at which diaphragm 
just touches the fixed electrode and is of importance for the 
design of Touchmode Capacitive Pressure Sensors [2]. The 
touch-point pressure(Ptouch ) is found out by  differentiating 
the deflection w(x,y) at the center i.e. at x=0, y=0 with 
respect to pressure P at zero voltage and equating δw/δP  to 
zero, as after touchpoint is reached, there is no further 
deflection in vertical direction. The closed form expression 
for touch-point pressure is  
 

4
20

1152(
(10 )

245

)
eff

touch

d d

P D a h

a

σ
+

+=                          (14) 

Table 2 compares the touch-point pressure obtained from 
this model with that obtained by simulation using 
Intellisuite®. Figure 4a and 4b compare the deflection with 
applied pressure as obtained from the propsed model with 
those simulated using Intellisuite® for a square diaphragm 
with a = 250 µm, h = 20µm, d0 = 8µm , ε0 = 8.85x10-12 F/m , 
E = 130GPa, deff  = 0, ν=0.3 with and without residual stress 
.  
 

4. CONCLUSIONS 
A semi-analytical technique is proposed for calculating the 
touch-point pressure and pull-in volatge of square 
diaphragm with clamped edges in presence of residual 
stress. The deflection versus pressure studies reported in 
literature show that the deflection continues to increase 
beyond the gap d0 between the diaphragm and fixed 
electrode. However, in present study, the deflection gets 
restricted at the gap d0. This enables accurate determination 
of touchpoint pressure and gives a realistic picture of 
deflection. The pull-in voltage and critical distance has also 
been computed. The advantage of this technique lies in its 
simplicity and speed unlike the FEM tools, which though 
accurate, take a longer computational time, and requires 
suitable skills in deciding the mesh size and making the 
choice of mesh element.  The results are in agreement with 
the simulated and experimental ones. 
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Table 1. Comparison of square diaphragm pull-in voltages 

Pull-in Voltage Vpull Volts Reference Diaphragm half-

side length a 

Thickness  

h  µµµµm 

Air-gap 

 d0 µµµµm 

Stress 

σσσσ  MPa 

Present model Reported 

Osterberg[11] 12.7 µm 0.1 0.76 50 46.28 45.25 

Bergqvist[16] 1 mm 5.1 2.3 6 9.98 10.0 

Sazzadur[14] 0.6 mm 0.8 3.5 20 17.43 17.75 

Table 2. Comparison of square diaphragm Touch-point pressure 

Touch-point Pressure    MPa Reference Diaphragm 

halfside length  

a 

Thickness  

h  µµµµm 

Air-gap 

 d0 µµµµm 

Stress 

σσσσ  MPa 

Present model Simulated 

Pie G.[17] 250 µm 20.0 8.0 0 9.2 9.6 
Pie G.[17] 250 µm 20.0 8.0 50 9.8 10.2 
 

Fig 4a. Deflection Vs. Pressure
 residual stress=0 MPa
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Fig 4b. Deflection vs. Pressure 
with residual stress= 50 MPa
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