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ABSTRACT 

Double-gate MOSFET's are one possible option to further 
extend CMOS scaling when planar MOSFET's have 
reached their scaling limit. This paper presents an analytic 
potential model for long-channel asymmetric double-gate 
(ADG) MOSFETs. The asymmetry is due to a difference in 
the work functions of the two gates. Taur has derived 
equations from the exact solution to Poisson’s and current 
continuity equation without the charge-sheet 
approximation. In previous work by the authors it was 
shown that, by means of the Lambert function, compact 
formulae could be derived from Taur’s equations for the 
symmetric double-gate (SDG) case. In this paper we show 
that these results of can be extended to the asymmetric case 
and we construct generalized compact formulae for an 
ADG device that are suitable for use in SPICE type 
simulators. 
 
Keywords: Analytic solutions, compact model, double gate 
MOSFETs. 

1 INTRODUCTION 

 

Figure 1.The structure of an asymmetric  double gate 
MOSFET  

 
Tsi  oxT  1φ∆  2φ∆  

10nm  1.5nm  0.56−  0.56  

Table 1. Device constants 
A Compact models for double gate (DG) MOSFETs is of 
interest, due to the potential of these design geometries as 
replacements for the standard planar MOSFET in the 
nanometer regime.  In this paper we assume the two oxide 
thicknesses are the same, 1 2T T Toxox ox= = and the device 
parameters are those given in Table 1.  In [1-5] Taur  et al. 
have developed a series of models for an undoped double-
gate device. The absence of doping in the silicon channel 
allows explicit integration of the Poisson equation in the 
quasi – 1-D approximation. The Poisson equation in the 
quasi-1-D approximation reads: 
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where q is the electric charge, siε is the permittivity of 

silicon, n
i

is the intrinsic carrier density, ( )xψ is the 

electrostatic potential and V  is the electron quasi-fermi 
potential. The hole density is regarded as negligible.    For 
the ADG the boundary conditions at the two oxide surfaces 
are given by 
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where 1sψ and 2sψ are surface potentials.  A solution to 
the Poisson equation (1) is given by 
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involving parameters α and β to be determined by the 
boundary conditions obtained by substituting (4) into (2-3) 
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work function differences between the two gates and 
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where ( )2 12

q

kT
δ φ φ= ∆ − ∆ . Equation (7) together with  

(5) can be solved numerically to obtain α  and β  as 

functions of V Vg − .  In [1] Taur shows that the total 

inversion charge iQ is given by 
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As explained in detail in Taur [1] the solution (4) is only 
valid for V Vg−  above a critical value Vcrit . Below that 

critical voltage level the solution (4) is replaced by the 
alternative hyperbolic solution 
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and  (7-9) are replaced by 
 

sinh( )
ln 2 (coth( ) coth( ) 0

sinh( )
r

α β
β α β α β δ

α β

+
+ − + + − =

−
      

1
2

2 ln 4 cot( )
sinh( )

q q
kT kT

V V c rg
β

β α β
α β

− = + + −
−

  

4
(cot( ) cot( ))kT

q
siQi Tsi

ε
β α β α β= − − +    

In the next section we will construct analytic solutions to 
(7-8) and (10).   
 
 
 

2 ANALYTIC SOLUTIONS 

In previous work [6-7] we have developed  analytic 
formulae for Symmetric Double Gate (SDG) devices with 
various geometries.  In this paper we construct analytic 
solutions to equations (5) and (7). To do so we introduce 

the new variable θ  defined by 
2
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be solved to give                                              
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If we use (10) in (7) and approximate cos( )α β−  by unity, 
then (7) reduces to the simple form 
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The solution is given in terms of the Lambert function [8] 
for which there are fast algorithms.  A similar technique 
was used for the SDG and details can be found in [6-7]. 
Using (10) in (8) and approximating cos( )α β−  by unity, 
yields the transcendental equation  
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for β . This equation is easily solved forβ  by a  Newton 
scheme. Thus (11) and (13) provide a fast algorithm for 
determining α  and β  as functions of the voltage V .  
Figure 1 shows a comparison of the numerical and analytic 
solution for β as a function of α . 

 
Figure 1. A plot of β versus α . 
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The range of α  has been restricted to (0, )
2

π
as the 

( , )α β solution (4) joins to the hyperbolic solution 
( , )α β at  (0, 0) .   

3 THE HYPERBOLIC SOLUTION 

The hyperbolic solution involving ( , )α β can be treated 
in a very similar manner to the ( , )α β .  We only consider  
negative values of α  and β  as this is the range that 
matches to the solution of the previous section at (0, 0) . 
Equations (10) and (13) are replaced by their hyperbolic 
counterparts 
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The variables ,U θ  remain as defined previously.  Figure 2 
shows the hyperbolic solutions for a range of negative value 
of  α  and β . 

 
Figure 2. A plot of β versus α . 

The value of β  saturates at a value 
2 4r
δβ −∞ +

∼ . Clearly 

our approximate solution fails for 10β −∼ but this is of no 
consequence as the intrinsic charge is negligible for such 
values. 

4 JOINING THE SOLUTIONS 

The two solutions must match as both ( , )α β and 

( , )α β approach (0, 0)  with sα β α β= = . This will also 
an exact formula for the critical voltage as a function of 
device parameters. The common slope value 
s α β α β= = must satisfy the equation 
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If we introduce coth( )
2
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=  equation (16) can be written 
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If 0δ >  and 1eξ <<  we can assume 
1
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an analytic solution for ξ  is given by  

LambertW( )reξδξ = −                                                 (18) 
Once s has been found the critical voltage is given from 
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Figure 3. The variation of Vcrit with the device parameter r. 

 
Figure 4. The variation of Vcrit with the δ . 

 
The dependence on the work function difference an be seen 
from  Figure 4.  
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5 THE INTRINSIC CHARGE 

From  α and β we can obtain the charge using (9). 

 
Figure 5. A plot of Q  versus VgV − . 

 
Figure 5 shows the true Qi  calculated numerically in 
comparison with that obtained using the analytic formulae. 

 

6 DEVICE CHARACTERISTICS 

From Qi  the current is obtained from the usual formula 
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An analytic approximation for iQ is given by 
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If we substitute (21) into (20) we can write   
4

( )1 2
kT
q

W siI J Jds L Tsi

ε
µ= −                                        (22) 

where  
1

1 2

dVdJ d
s d

θ
θ θθ θ

= ∫                                                        (23) 

and 

2 cot(2 )d

s

dVJ d
d

β

β
β β β

β
= ∫                                       (24) 

From (12) we obtain 
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This allows 1J  to be easily evaluated as 
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Figure 6. A plot ofθ  versus VgV − . 

To evaluate 1J we obtain θ  from
2

sin( )

β
θ
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 using our 

analytic forms for α and β .  Figure 6 shows the variation 

of  θ  with VgV − .  From (13) we obtain 
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This allow to write 2J in the exact form 

2 (2(1 ) 4 )2 1 2 3
kT

J r I I rI
q

= + − −                                (28) 

with 

2cot (2 ) ( ) ( )1 1 1
d

I d F F sd
s

β
β β β β β

β
= = −∫                   (29) 

cot(2 ) ( ) ( )2 2 2
d

I d F F sd
s

β
β β β β

β
= = −∫                      (30) 

2cot(2 ) csc (2 ) ( ) ( )3 3 3
d

I d F F sd
s

β
β β β β β β

β
= = −∫   (31) 

involving the explicit functions 
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For the hyperbolic solution the intrinsic charge can be 
approximated by 
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By a similar process to the non-hyperbolic case, exact 
formulae for the currents can be obtained for the hyperbolic 
case also. Full results will be reported elsewhere.  
 

7 CONCLUSION  

We have shown that be using asymptotic methods 
accurate analytic formulae can be derived for the 
characteristics of an ADG device. These results allow Fast 
algorithms for use in SPICE type simulators.   
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