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ABSTRACT 
We describe an innovative approach to generate an optimal 
skew corner of a compact device model (e.g., a Spice model) 
for a single performance target, and to generate a 
common/optimal corner of a compact device for multiple 
performance targets. We also analyze the existence condition 
of a common/optimal corner.  
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1 INTRODUCTION 
Compact models of semiconductor devices are often 
enabled with Monte Carlo simulation capability. To save 
circuit simulation time, it is often desirable to have a worst-
case skew-corner library for simulating the worst-case 
behavior of the circuit [1−4]. We present an innovative 
approach to generate an optimal skew corner of a 
compact/Spice  device model for a single performance 
target, and to generate a common/optimal skew corner of a 
compact model for multiple performance targets. An 
optimal skew corner is such a skew corner that has the 
largest joint probability density (JPD) among multiple 
corners or is a least-squares fitting corner. Each statistical 
parameter of the model is properly skewed within its 
tolerance range in such a way that the model will reproduce 
the fast/slow corner results of one or multiple performance 
targets while maximizing the JPD. The existance conditions 
of a common/optimal corner are analyzed.  

The corner model problem of N targets and M statistical 
model parameters is solved based on the sensitivities aij (of 
the ith target on the jth parameter) in the first-order 
approximation. The corner model problem in the case of 
two statistical parameters (M = 2) is also solved graphically. 

2 CORNER MODEL METHODOLOGY 
I. In the original coordinate system. For a given compact 
device model of M independent statistical model parameters 
x1, x2, ..., xM and a given operating point (e.g., device length 
and width, voltage biases, temperature, etc.), we obtain a 
first-order approximation for each of N performance targets 
Fi(x1, x2, ..., xM) around its nominal performance value Fi0 = 
Fi(x10, x20, ..., xj0, ..., xM0), 
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where xj0 is the nominal value of the jth model parameter xj, 
and the coefficient aij (j = 1, 2, ..., M) is the sensitivity of 
the ith performance target Fi with respect to the jth model 

parameter xj  at the given operating point. The JPD for the 
M independent statistical parameters is  
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where σj is the standard deviation of the jth statistical model 
parameter xj. The variance of the ith target Fi is thus 
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Relation (3) links the standard deviation Si of the ith circuit 
performance target to the standard deviations σj of the 
compact model parameters. The k-σ (k = 1, 2, 3, …) 
best/worst case of Fi is (Fi0 + kηiSi) with ηi being 1 (for an 
upper bound) or −1 (for a lower bound). In order to reach a 
k-σ best/worst case performance corner, the model 
parameters should take values within their respective 
tolerance range [xj0 − kσj, xj0 + kσj].  

II. In a normalized coordinate system. First, we introduce 
normalized sensitivity coefficients  

,/ ijijij Sa σα =        ,,...,2,1 Ni =           (4) ....,,2,1 Mj =

The coefficients αij and aij are of the same sign. Introducing 
a set of vectors T

iMiii ),,,( 21 αααα L
r

=  in the M-
dimensional model parameter space (u1, u2, ..., uM) and 
using (3) and (4), we find that the length of each vector is 1, 
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Equation (5) shows that each of normalized sensitivity 
coefficients is bounded, ,11 ≤≤− ijα  j = 1, 2, …, M.  

Next, we introduce a shifted-and-scaled coordinate system, 

,)/()( 0 jjjj kxxu σ−=                          (6)                        ,...,,2,1 Mj =

which is dimensionless. Notice that uj = 0 means that the 
model parameter xj is at its nominal value xj0, and 
|uj| 1≤ corresponds to the model parameter xj within its k-σ 
tolerance range, jjjjj kxxkx σσ +≤≤− 00 .  The JPD (2) 

becomes ( ),2/exp 2 uukP
rr

⋅−∝ where  
The JPD peaks at the origin . Moving away from the 
origin, the JPD decreases rapidly. An equal probability 
surface is a sphere in the the M-dimensional model 
parameter space. So, the closer a point is to the origin
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the higher the joint probabilty density P.   
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Using Eqs. (1), (4), (6), and the above mentioned best/worst 
case of performance targets Fi, we obtain N linear equations 
for determing the M corner model parametes, 

,ii u ηα =⋅
rr

                                              (7) ....,,2,1 Ni =

Geometrically, each equation in (7) represents a plane in the 
M-dimensional model parameter space whose distance to 
the center of the normalized coordinate system is 1 and, for 
the ith target, the normal direction of the plane is iα

r
. In 

other words, each plane is tangent to a unit sphere in the M-
dimensional space, and the unit sphere is an equal 
probability surface. Each plane is also a plane of constant 
value of Fi. In the two-parameter case (M = 2), the M-
dimensional model parameter space simplifies to a two-
dimensional plane, the unit sphere reduces to a unit circle, 
and the plane becomes a straight line (Figs. 1−3). 

3 OPTIMAL CORNER FOR A SINGLE 
TARGET 

Often we need to provide N separate skew corners, i.e., one 
skew corner for the best or worst case value of target F1 
only, and another skew corner for the best or worst case 
value of target F2 only, etc.  

I. Typical non-optimal corner solution. A typically used 
method is to skew all statistical model parameters together 
in the same percentage amount through the use of a corner 
parameter (say, cor), namely, to set L== |||| 21 uu  

= cor/3.  In this approach, the corner solution for 
the ith circuit performance target is found from Eq. (7) to be 

The 
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st order solution of the corner 

problem. When projected to a two-parameter sub-space, 
this corresponds to moving out in the 45° direction in the 
nomalized coordinate system. This method usually does not 
give an optimal skew corner. In general, any point on the 
ith plane in (7) is a corner point for the ith target. Most of 
them, however, are not optimal corners.  

II. Optimal corner solution. By comparing Eq. (7) with Eq. 
(5), we find that 
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are a set of solutions (of unequal percentage amount of 
skewing) for the ith target. Equation (8) says that the 
amount of skewing, uj

(1), for each parameter xj is 
proportional the normalized sensitivity αij. If a particular 
model parameter xj has no effect on a performance target, 
then it should stay at its nominal value, xj = xj0, for the 
corner of that performance target. Using Eq. (5) and noting 
that ηi is either 1 or −1, we find that the length of the skew-
corner vector solution (8) is 1,  This shows 
that solution (8) is on the unit sphere in the M-dimensional 
space and thus is the optimal solution, since it has the 

shortest distance 1 to the center of the sphere, i.e., the 
largest JPD among all corner solutions. Further, each of 
solution components is bounded,  −1  u

.1)1()1( =⋅ uu
rr

≤ j
(1)  ≤  1. 

III. Two-parameter example. Figure 1 is an example of a 
diffused resistor. Sheet resistance Rs and end resistance Rend 
are two (main) statistical model parameters typically. The 
origin O in Fig. 1 represents nominal for all parameters. 
The unit circle is a contour of equal JPD (k = 3). The JPD 
outside the unit circle is smaller than the JPD on the unit 
circle. Resistance value increases with increasing sheet 
and/or end resistance. Both “lines of 3σ upper and lower 
bounds of resistance” (resistance target lines) are targent 
lines of the unit circle, and are parallel to each other. Any 
point on one of two resistance target lines is a corner point, 
but most of them are not optimal corners. The intersection 
of the 45° line and a resistance target line is a typical non-
optimal corner solution discussed in I. The optimal corner is 
on the unit circle, since it has the shortest distance to the 
center of the circle. 

 
Figure 1: Diffused resistor: Resistance variations and 
corners in the space of sheet resistance & end resistance. 

4 COMMON/OPTIMAL CORNER FOR 
MULTIPLE TARGETS 

If one wants to find a common corner in the the M-
dimensional space for N performance targets Fi 
simultaneously, then N equations in (7) must be satisfied 
simultaneously. In the following we discuss the solutions of 
Eq. (7) in 3 separate situations. 

I. Situation of N = M. When the number of performance 
targets N equals the number of model parameters M, the M 
linear algebraic equations (7) uniquely determine M corner 
coordinates u1

(1), u2
(1), ..., uM

(1). When all ratios αi1/ηi (i = 1, 
2,..., N) have the same sign (or being zero), and all ratios 
αi2/ηi (i = 1, 2,..., N) have the same sign (or being zero), 
etc., the solution will be bounded, −1  u≤ j

(1) ≤  1 (j = 1, 
2, ..., M), and the sign of uj

(1) is the same as that of αij/ηi. 

Figure 2 shows an interconnect example with N = M = 2. 
Wire resistance R increases with decreasing wire width W 
and/or wire thickness T, so does the product RC of wire 

A corner, 
but not 
optimal 

r = 1 

Contour of equal joint 
probability density 

∆Rend/3σ(Rend) 

O 

Optimal 
corner 

∆Rs/3σ(Rs) 

Nominal 
resistance

3σ lower  
bound of 
resistance

3σ upper  
bound of 
resistance.
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resistance R and capacitance C. Each of η1 and η2 is 1, 
since each target is an upper bound target. Both α11/η1  and 
α21/η2  have the same sign (negative), and both α12/η1 and 
α22/η2 are of the same sign (negative), and the common 
corner (u1

(1), u2
(1)) of 3σ worst-case (WC) R and 3σ WC RC 

is located within the 3σ tolerance bounds of wire width W 
and wire thickness T, |uj

(1)| < 1. In addition, the sign of u1
(1) 

is the same as that of α11/η1 and α21/η2 (negative), and the 
sign of u2

(1) is the same as that of αi2/ηi (negative). 

 
 Figure 2: Interconnect resistance R and interconnect delay 
RC in the space of wire width and wire thickness.  

Figure 3(a) shows a FET example with N = M = 2. FET 
drain current decreases with increasing channel length L 
(α11 < 0) and/or increasing gate oxide thickness Tox (α12 < 
0). FET gate leakage increases with increasing channel 
length L (α21 > 0) and/or decreasing gate oxide thickness 
Tox (α22 < 0). For the lower bound of FET current, η1 = −1. 
For the upper bound of gate leakage, η2 = 1. So, the two 
different performance targets lead to the same sign 
(positive) between α11/η1 and α21/η2, but opposite signs 
between α12/η1 (positive) and α22/η1 (negative). The 
common corner is outside channel length bound, |u1

(1)| > 1, 
which may not be desirable (the JPD at the corner is usually 
too low). One may want to use two separate corners, one 
for the drain current only and the other for the gate leakage 
only.   

Figure 3(b) illustrates a MOS varactor example of N = M = 
2. The accumulation capacitance decreases with decreasing 
device length L (α11 > 0), increasing gate oxide thickness 
Tox (α12 < 0). For the lower bound of accumulation 
capacitance, η1 = −1. Here, the two different performance 
targets give opposite signs between α11/η1 (negative) and 
α21/η2 (positive), and opposite signs between α12/η1 

(positive) and α22/η1 (negative). Thus, both |u1
(1)| and |u2

(1)| 
are larger than 1, and the common corner is not desirable 
(extreamly low JPD). Two separate corners are needed. 

Figure 4 shows fast-NFET—slow-PFET (fNsP) and slow-
NFET—fast-PFET (sNfP) corners for the saturation current 
of a pair of NFET and PFET. The variations of NFET and 
PFET channel length are partially correlated. These coupled 

variations (plus the variations of Tox, threshold voltage, etc.) 
give the ellipses in Fig. 4. Figure 5 illustrates the 
corresponding common corners in the space of FET channel 
length variations. The ellipse in Fig. 4 becomes the circle in 
Fig. 5, and two solid (dashed) lines in Fig. 4 remain as two 
solid (dashed) lines in Fig. 5. We use the principal 
component analysis to decompose the N-P channel length 
variations into a symmetric N-P component (u1) and an 
anti-symmetric component (u2). After a normalization,  the 
variations of NFET and PFET normalized currents are 

,.... 2,1222121, ηαα =+=∆ uuI PN m where we have used 

2111 αα = and .2212 αα −=  For the fNsP and sNfP corners 
in Fig. 4, we have ,PN II ∆−=∆  namely, .21 ηη −=  Here 
α11/η1 and α21/η2 are of opposite signs. In spite of this and 
different from Fig. 3(a), we still get |uj 

(1)| ≤  1 as desired. 
The reason is that, in this highly correlated case, we have 
properly set |∆IN| =  |∆IP| = |η1| = |α22| < 1, not set |η1| = 1.  

 

 

Figure 3: Common corners outside tolerance bounds due to 
the opposite moving directions w.r.t. process parameters. 
(a) FET: Worst-case drain current and gate leakage current. 
(b) MOS varactor: Worst-case accumulation capacitance 
and gate leakage. 

II. Situation of N > M. When N > M, there are more 
equations than unknowns, and we use a least-squares fit 
method to find an optimum set of  We minimize .u

r

( ) .2
1 ii

N
i u ηα −⋅∑ =

rr
Setting each of M first-order 

derivatives w.r.t. uj to zero, we obtain M linear algebraic 
equations. Solving the M liner algebraic equations, we find 

r = 1  

WC: 3σ  
max(RC) 

the values of M variables u1, u2, ..., uM.   

WC: 3σ 
max(R) 

u1 = 
∆W/3σ(W)

u2 = ∆T/3σ(T) 

Common corner 
is inside width 
and thickness 
3σ tolerance 
bounds 

Common corner 
is outside channel 
length 3σ 
tolerance bound.  

r = 1 

u1 = ∆L/3σ(L) 

WC: 3σ min(Ion) 

WC: 3σ  
max(gate  
leakage)  

(a) u2 = ∆Tox/3σ(Tox)

r = 1  

WC: 3σ  
max(gate leakage)  

WC: 3σ 
min(Caccuml)

u2 = ∆Tox/3σ(Tox)  

u1 = ∆L/3σ(L)
Common 
corner is 
outside the 
3σ tolerance 
bounds of 
both device 
length and 
gate oxide 

(b)
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Figure 4: S
distribution. P

chematic plot of NFET current vs. PFET current 
oint 1 is a fast-NFET, slow-PFET (fNsP

nd sNf poi  their optimal 
and common corner solutions in the N-P channel lengt
plane of model parameter space. 

 2 is given in Fig. 6. At a 
xed nominal channel length L, FET saturation current Ion 

) 
corner, and point 2 is a slow-NFET, fast-PFET (sNfP) 
corner. 

 
Figure 5: For fNsP a P nts in Fig. 4,

h 

 

A FET example of N = 3 and M =
fi
decreases with increasing channel length variation ∆L and 
threshold voltage parameter Vth0. As the nominal channel 
length L increases, Ion becomes more sensitive to the 
variation ∆Vth0 in threshold voltage parameter and less 
sensitive to the channel length variation ∆L. An optimal 
corner S for the three WC Ion targets of different channel 
lengths is found at the center of a triangle formed by the 
three WC Ion target lines. The least-squares solution point S 
of the three Ion lines satisfy .1)(),(0 21 << SuSu  

III. Situation of N < M. There are many corner solutions in 
this situation. We find the opti xmal solution by ma imizing 
the JPD (2) subject to the N constraints as given by Eqs. (7). 
Namely, we minimize ( ) .1 iii

N
i uuu ηαλ −⋅+⋅ ∑ =

rrrr
   Setting 

each of M first-order derivatives w.r.t uj to zero, we have M 
linear equations. Settin first-order 
derivatives w.r.t. λ

g each of another N 

 a set of optimal 

uares comm  Ion for 3 
different channel lengths in the space of channel length and

 solution, we further construct 
a 2 -or  ation 

to generate an 
optimal skew corn o ice model (Spice 

ef Watts for valuable 
anuscript im

g, IEEE Trans. 
Computer-A . 481, 1995. 

i to zero, we re-get N linear equations in 
Eq. (7). We solve (M + N) linear algebraic equations and 
get (M + N) variables u1, ..., uM, λ1, ..., λN.  

The single-target case (N = 1) discussed in Sec. 3 is a 
special case of this situation. Solution (8) is
solutions (for a single target problem), since it maximizes 
the joint probability distribution. 

 
Figure 6: A least-sq on corner of FET

 
thresold voltage variations.   

5 HIGHER-ORDER SOLUTION 
After obtaining the first-order

nd der (i.e., quadratic response surface) approxim
performance targets. Then, we use the above fto the irst-

order solution as the starting point of an iteration solution 
process to solve a set of non-linear (say, quadratic) 
equations. In this approach, we obtain a set of more 
accurate corner solution, u1

(2), u2
(2), ..., uM

(2). 

6 SUMMARY 
We have described an innovative approach 

er f a compact dev
 performance target, model) for a single and to generate a 

common/optimal corner of a compact device for multiple 
performance targets. The optimal corners are found by 
maximizing the joint probability density. The existence 
condition of a common/optimal corner is discussed. The 
approach presented here can also be applied to the corner 
modeling analyses of circuit simulations, higher-level logic 
cell/block delay, timing closure, etc.  
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