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Abstract:  

This paper describes an explicit short channel 

compact model of an Independent Double Gate 

(IDG) MOSFET with an undoped channel. The 

validity of this model is demonstrated by 

comparison with Atlas numerical simulations. The 

model was implemented in circuit simulator in 

Verilog-A language to design digital and analog 

circuits using the independent gate structures.  

Introduction:  
IDG MOSFET is a particularly promising device, 

which is expected for sub-32nm node. This device 

has numerous advantages like a quasi ideal 

subthreshold slope and a better Ion current. The 

new flexibility offered thanks to a second gate 

which can be independently driven, is another 

one. Consequently, to design new circuits and to 

take advantage of this new structure, a compact 

model including Short Channel Effects (SCE) is 

crucial.  

In this paper, an explicit short channel compact 

model of IDG MOSFET is presented. Our model 

includes threshold voltage roll-off, degradation of 

the subthreshold slope and DIBL (Drain Induced 

Barrier Lowering) effect.  

The first part presents our explicit threshold 

voltage based compact model for a long channel 

device. Then, the explicit short channel model is 

explained. Finally, the model was validated by 

confrontation with Atlas numerical simulations [1] 

and was implemented in simulator in Verilog-A 

language. 

Explicit Vth model for a long channel device:  

Fig. 1 shows the IDG MOSFET structure. L is the 

gate length, Tsi is the silicon film (or body) 

thickness, Tox1 and Tox2 are the front and the back 

gate oxide thicknesses. Vg1 and Vg2 are the front 

and the back gate voltages, respectively. ∆Φm1 and 

∆Φm2, which are the work function differences 

between the front (respectively back) gate and the 

intrinsic silicon are supposed zero. The silicon 

film is supposed undoped.  

To model this device, some assumptions were 

taken into account: Boltzmann statistics was 

chosen, the current is the sum of the diffusion and 

drift currents as in the Pao and Sah model [2], no 

quantum effect and no ballistic transport are 

considered for the moment. 

1D Poisson equation is solved to derive the drain 

current Ids. Boundary conditions, electrical 

neutrality and physical assumptions allow getting 

explicit Ids. Consequently, the explicit drain 

current Ids is given as [3]: 
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Where W is the gate width, µ the mobility 

(assumed constant), ut the thermal voltage and, 

Coxj the front and the back gate oxide capacitances 

respectively. Index j is for 1 or 2.  

Vgtj,eff (which have the same form as in [4]) 

represent the effective gate voltages and nj,eff are 

the effective coupling factors. They allow 

continuity between weak and strong inversion. 

Vgtj,eff  are defined thanks to the explicit threshold 

voltage, which takes into account interface 

coupling between front and back interfaces.  

Vdsj,eff correspond to the effective drain voltages. 

They allow a good modeling of the drain 

saturation voltage and continuity between linear 

and saturation regimes.  

All these parameters are analytical and explicit. 
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Explicit SCE model:  

2D Poisson equation is analytically solved in 

weak inversion. The evanescent-mode analysis is 

used as in [5] to get the channel potential 

distribution: 
y)(x, )(),( 1 ψψψ ∆+= xyx D
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ψ1D(x) is the 1D surface potential and ∆ψ(x,y) the 

2D correction term. λ1, b1 and c1 are given in [5]. 

These parameters are totally explicit and depend 

only on the geometry of the device and on the 

different voltages. 

Consequently, the drain current for a short 
channel device in weak inversion is expressed as: 
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Vds is the drain voltage, q the electronic charge 

and ni the intrinsic carrier concentration. Due the 

double integral, this expression can not be 

considered as explicit. In order to obtain an 

explicit compact model, for the correction term, 

we assume that the equivalent potential in the 

channel is defined in xmax, the maximum potential 

in the x direction and in ymin, the minimum 

potential in the y direction. It is the point where 

the electron density is maximal. xmax and ymin are 

obtained when the respective derivative is zero. 

Thus, we get the following explicit expression of 

Ids in weak inversion: 
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ψs1 and ψs2 are the front and the back gate surface 

potentials, derived considering the DG MOSFET 

as a capacitive divider. Thus, we obtain: 
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Eq. (5) should be written as the sum of the front 

drain current Ids1 and the back one Ids2, with Idsj 

given by: 
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Vthj is the 1D threshold voltage and nj the 1D 

coupling factor.  

This way of writing the front and the back drain 

current in weak inversion at both interfaces was 

already used in [3], without taking into account 

SCE. 

To include SCE in our compact model, we want to 

express Idsj as: 
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The 2D threshold voltages Vthj,sce and coupling 

factors nj,sce will be obtained by identification of 

(8) and (9). Then, expressions (10a, b, c, d and e) 

and (11) are obtained. 
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Eg is the band gap. j’ represents the opposite gate: 

if j=1 (for the front gate), so j’=2 (for the back 

one) and if j=2 then j’=1. 
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These bidimensional expressions (10a, b, c, d and 

e and 11) are replaced in (2a) and (2b) to get a 

unified model.  

We also add an expression of the Early voltage 

(BSIM-like adapted to the DG MOSFET) to take 

into account the channel length modulation and 

the DIBL. Finally, a mobility model which 

considers the velocity saturation of the carriers 

was included.  

Implementation:  

This compact model was written in Verilog-A to 

allow simulations with Eldo (Mentor Graphics) or 

ADS (Agilent) circuit simulators. Comparisons 

between Atlas and ADS numerical simulations are 

shown in Fig. 2 to 8.  

These figures are for an effective 30nm-channel 

length, the silicon film thickness is 10nm and the 

front and the back equivalent gate oxide 

thicknesses are 1nm. The carrier mobility was 

assumed constant. 

Figure 2 represents the drain current versus the 

front gate voltage, for different back gate voltages 

from 0V to 1.2V by step of 0.2V, in linear and in 

logarithmic scale. The drain voltage is 5mV. 

Figure 3 is almost the same graphic, only the drain 

voltage changes: 1.2V, to prove the agreement in 

the saturation region. Curves in Fig. 4 show the 

drain current versus the drain voltage for different 

front gate voltages (from 0V to 1.2V) at low back 

gate voltage (0V). Figure 5 is almost the same 

graphic for a high back gate voltage (1.2V). The 

drain conductance is presented in Fig. 6 for 

different front gate voltages (from 0 to 1.2V) for a 

back gate voltage in weak inversion. All these 

figures agree very well with numerical 

simulations.  

Finally, figures 7 and 8 prove the accuracy of our 

model in the case of a symmetrical device. 

Conclusion:  

In this work, an explicit compact model was 

developed for undoped IDG MOSFET. This 

model is valid for all operating modes: in weak 

and in strong inversion, in linear and in saturation 

region. This model can be used for a long and a 

short channel MOSFET. Moreover, as this model 

is valid for the most general case of a DG 

MOSFET, it means when gates are independently 

driven, the model can also be used for a 

symmetrical or an asymmetrical DG MOSFET. 

Comparisons with numerical simulations prove 

the validity and accuracy of this model. Moreover, 

the model was implemented in Verilog-A and 

circuits were simulated. The robustness of the 

model is excellent.  
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Figure 1: IDG MOSFET. 
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Figure 2: Drain current versus front gate voltage 

for several back gate voltages at low drain voltage 

(Vds=5mV) in logarithmic and linear scales for an 

nMOSFET with L=30nm and W=1µm. 
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Figure 3: Ids versus Vg1 for several Vg2 at Vds=1.2V 

for an IDG MOSFET. 
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Figure 4: Comparison between Atlas numerical 

simulation and our compact model of the drain 

current versus the drain voltage for several front 

gate voltages at Vg2=0V. 
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Figure 5: Ids versus Vds for several Vg1 at Vg2=1.2V 

for an nMOSFET with L=30nm and W=1µm. 
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Figure 6: Drain conductance versus Vds for several 

Vg1 at Vg2=0V for an nMOSFET with L=30nm and 

W=1µm. 
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to 1.2V for a symmetrical DG nMOSFET with 

L=30nm and W=1µm. 
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Figure 8: Comparison between Atlas numerical 

simulation and our model of Ids versus Vds for 

different Vg from 0 to 1.2V for a symmetrical DG 

nMOSFET with L=30nm and W=1µm. 
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