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ABSTRACT

In the design of micro-electromechanical systems
(MEMS) such as micro-resonators, one of the major dis-
sipation phenomena to be considered is thermoelastic
damping. The performance of such MEMS is directly
related to their thermoelastic quality factor which has
to be predicted accurately. Moreover, the performance
of MEMS depends on manufacturing processes which
may cause substantial uncertainty in the geometry and
in the material properties of the device. The aim of
this paper is to provide a framework to account for un-
certainties in the finite element analysis. Particularly,
the influence of uncertainties on the performance of a
micro-beam is studied using the perturbation stochastic
finite element method. The developed method is ap-
plied on the analysis of the thermoelastic quality factor
of a micro-beam whose elastic modulus is considered as
random.

Keywords: stochastic finite element method, ther-
moelastic damping, micro-resonator, uncertainty mod-
eling.

1 INTRODUCTION

Micro-electromechanical systems (MEMS) are sub-
ject to inevitable and inherent uncertainty in dimen-
sional and material parameters, that leads to variabil-
ity in their performance and reliability. Manufacturing
processes due to the small dimensions and high feature
complexity leave substantial variability in the shape and
geometry of the device while material properties of a
component are inherently subject to scattering. The
effects of these variations have to be considered and a
modeling methodology is needed in order to ensure re-
quired MEMS performance under uncertainties.

In the literature, different works are carried out to
quantify the effect of the uncertainties on electrostat-
ically actuated MEMS [1]–[4]. These studies consider
material and geometric parameters as random variables
and use costly Monte-Carlo methods as well as first
and second order reliability methods. Another approach
to avoid the detrimental effect of these uncertainties is
to design MEMS whose performances are not sensitive
to the uncertain design parameters [5]–[7], but this is

not always possible. In this paper, the Perturbation
Stochastic Finite Element Method (PSFEM) is used to
quantify the influence of uncertain geometric and ma-
terial property variations on the thermoelastic quality
factor of micro-resonators.

The paper is organized as follows. Firstly, the proce-
dure to quantify the thermoelastic quality factor is ex-
posed. An efficient thermoelastic finite element formula-
tion is the key point in order to investigate the influence
of uncertainties on the behavior of micro-systems. Then,
the perturbation stochastic finite element method is ex-
tended to the study of the thermoelastic quality factor.
Finally, the results of PSFEM simulations are presented
and discussed.

2 THERMOELASTIC FINITE
ELEMENT FORMULATION

Thermoelastic damping represents the loss in energy
from an entropy rise caused by the coupling between
heat transfer and strain rate. Analytical models exist
for simple configurations such as beams [8], [9]. How-
ever, a numerical approach is required in order to take
into account the spatial variation of the material prop-
erties. A thermoelastic finite element formulation is de-
rived in [10] and shows efficiency in order to estimate
the thermoelastic quality factor [11].

In order to determine the thermoelastic quality fac-
tor, the thermoelastic frequencies λ have to be com-
puted. The eigenvalue problem corresponding to the
thermoelastic problem is



−Kuu −Kuθ 0

0 −Kθθ 0
0 0 Muu







xu

xθ

ẋu


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Muu 0 0
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xθ

ẋu


 , (1)

where subscripts u and θ refer respectively to the me-
chanical and thermal degrees of freedom. M, C and K
are respectively mass, damping and stiffness matrices.

If the number of mechanical and thermal degrees of
freedom is denoted by nu and nθ, respectively, the eigen-
value problem (1) has 2nu conjugate complex eigenval-
ues and nθ real eigenvalues. The 2nu eigenvalues cor-
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respond to the mechanical frequencies and the nθ ones
to the thermal frequencies. Solving the thermoelastic
eigenvalue problem with a non-symmetric block Lanczos
algorithm allows the calculation of the complex eigen-
values of the thermoelastic structure and hence, the de-
termination of the quality factor of the corresponding
mode. The quality factor of the nth mode is given by

Q =
1
2

∣∣∣∣
=(λ)
<(λ)

∣∣∣∣ . (2)

3 PERTURBATION STOCHASTIC
FINITE ELEMENT METHOD

Stochastic Finite Element Method (SFEM) can be
applied to the thermoelastic problem. The present work
focuses on second moment approaches, in which the first
two statistical moments, i.e. the mean and the vari-
ance, are estimated. The perturbation SFEM is used
in order to determine the mean and the variance of the
thermoelastic quality factor of MEMS. The perturba-
tion SFEM [12] consists in a deterministic analysis com-
plemented by a sensitivity analysis with respect to the
random parameters. This enables the development of a
Taylor series expansion of the response, from which the
mean and variance of the response can be derived know-
ing the mean and variance of the random parameters.

The perturbation method considers that the random
design variables bi are perturbed from their expectation
b̄i, so that the random variables bi are written as the
sum of a deterministic value b̄i and a zero mean random
variable ∆bi.

The second order Taylor expansion about the nom-
inal value b̄ with respect to the random variables bi is
given by

Q(b̄) ≈ Q̄ +
n∑

i=1

Q,i∆bi +
1
2

n∑

i=1

n∑

j=1

Q,ij∆bi∆bj , (3)

where the subscripts , i and , ij respectively denote the
first and second order partial derivative with respect to
bi and bj computed at the nominal value b̄.

Since the random variables ∆bi are zero-mean ran-
dom variables of known covariance, the expectation of
the quality factor is

E
[
Q(b̄)

] ≈ Q̄ +
n∑

i=1

Q,iE [∆bi]

+
1
2

n∑

i=1

n∑

j=1

Q,ijE [∆bi∆bj ] (4)

= Q̄ +
1
2

n∑

i=1

n∑

j=1

Q,ijCov(bi, bj), (5)

while the variance of the quality factor has the following

expression:

V ar
(
Q(b̄)

)
= E

[(
Q(b̄)− E

[
Q(b̄)

])2
]

(6)

≈
n∑

i=1

n∑

j=1

Q,iQ,jE [∆bi∆bj ] (7)

=
n∑

i=1

n∑

j=1

Q,iQ,jCov(bi, bj). (8)

The mean is second-order accurate, while the variance is
first-order accurate since the second-order terms vanish.
The first and second order derivatives of the quality fac-
tor are expressed in terms of the first and second order
derivatives of the eigenvalue. Due to the nature of the
thermoelastic eigenproblem, this study involves the cal-
culation of eigenvalue sensitivities of a non-symmetric
damped system [13].

4 APPLICATIONS

In numerous micro-resonators, the vibrating part con-
sists in a clamped-clamped silicon beam. In this sec-
tion, the test case beam has the following dimensions:
a length L of 90 µm, a height h of 4.5 µm and a width
w of 4.5 µm (Figure 1). The thermal and mechani-
cal properties of silicon at To = 298 K are: ρ = 2300
kg/m3, ν = 0.2, cv = 711 J/kgK, α = 2.510−6 K−1 and
k = 170 Wm−1K−1. The thermoelastic quality factor
is determined for the first bending mode in plane OY Z.
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Figure 1: Beam geometry.

Young’s modulus is considered as a Gaussian random
variable. Its mean is equal to 158 GPa and its coefficient
of variation, i.e. the ratio between the standard devia-
tion and the mean, is set to 6 %, which is a typical value
encountered in polysilicon. Direct Monte-Carlo simula-
tions are carried out in order to get a reference solution.
2000 samples are generated.

Table 1 lists the means and standard deviations of
the quality factor obtained by different methods. Monte-
Carlo results, denoted MC, are considered as reference
solutions. First and second order perturbation stochas-
tic finite element methods, denoted PSFEM 1st and PS-
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FEM 2nd, are applied to study the thermoelastic qual-
ity factor of the test case. Since the determination of
the second order derivative of the eigenvalue can be too
computationally demanding, a second order PSFEM in
terms of the quality factor but only taking into account
the first order derivative of the eigenvalue, denoted PS-
FEM p2nd, is also investigated. The CPU times for
each method are normalized with respect to the CPU
time required for one deterministic finite element res-
olution and are presented in Table 1. MC simulations
are a lot more CPU time costly than PSFEM and as
the order of PSFEM increases, the CPU time increases.
Since the approximation of the standard deviation of the
quality factor is first order accurate (Equation (7)), the
standard deviation has the same value whatever the or-
der of the PSFEM and the relative error with respect to
MC standard deviation is less than 1 %. The first order
PSFEM gives a mean equal to the deterministic quality
factor, i.e. 12967, while MC simulations yield a higher
mean. This is due to the fact that the quality factor is a
non-linear function of Young’s modulus as shown in Fig-
ure 2(b). Moreover, due to this non-linear variation, the
probability density function of the quality factor is not
strictly Gaussian as shown in Figure 2(a). In this figure,
the bars represent the distribution of the output sam-
ples obtained by MC simulations and the solid line plots
the Gaussian distribution with a mean and a standard
deviation equal to the values of the MC samples. The
second order PSFEM approximation of the mean is re-
ally good (0.02 % relative error) and the pseudo second
order PSFEM approximation has also a good accuracy
(0.026 % relative error) at a less computational effort.

Table 1 also compares the means and standard devi-
ations of the quality factor corresponding to three dif-
ferent coefficients of variation of Young’s modulus, i.e.
6 %, 10 % and 20 %. As the coefficient of variation of
Young’s modulus increases, the approximations of the
mean and standard deviation of the quality factor by
PSFEM become less accurate. The second order PS-
FEM is more accurate than the pseudo-second order PS-
FEM at the price of a considerably larger computational
effort. Figures 2(a,c,d) show that as the coefficient of
variation of Young’s modulus increases, the probabil-
ity density function drifts away from the Gaussian dis-
tribution and PSFEM approximations get worse. Note
that as the coefficient of variation increases, the required
number of samples in MC simulations increases leading
to a larger CPU time(nsamples = 5000 for CoV = 10%
and nsamples = 10000 for CoV = 20%).

These analyses show that PSFEM is adequate in or-
der to determine the mean and standard deviation of the
quality factor when Young’s modulus variation is small
(i.e. in this application, a coefficient of variation lower
than 10 %). The second order and the pseudo-second or-
der perturbation stochastic finite element methods pro-

vide more information than the first order one. Indeed,
the first order method does not take into account the
variation of the mean due to the non-linear characteris-
tic of the response with respect to the random variable.
Moreover, the increase in accuracy from PSFEM p2nd
to PSFEM 2nd is not sufficient to justify the increase in
computational effort.

5 CONCLUSION

The Perturbation Stochastic Finite Element Method
has been extended to the analysis of a strongly coupled
multiphysic phenomenon: thermoelastic damping. The
methodology has been validated and it efficiency has
been proved on 1-D cases. Therefore, using PSFEM, a
numerical method is available to quantify the influence
of uncertain property variations on the thermoelastic
quality factor of micro-resonators, making available a
new efficient numerical tool to MEMS designers.
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Figure 2: Probability density function of the quality factor (CoV(E)=0.06 (a), CoV(E)=10 % (c) and CoV(E)=20 %
(d)), (b) Variation of the quality factor with respect to Young’s modulus.

Table 1: Variation of the mean and coefficient of variation of the quality factor with respect to the coefficient of
variation of Young’s modulus.

Method CoV(E) [%] Mean(Q) [−] σ(Q) [−] CoV(Q) [%] t∗CPU [−]
MC 6 13035 980 7.52 2005

PSFEM 1st 6 12967 971 7.49 1.02
PSFEM 2nd 6 13037 971 7.45 1.16
PSFEM p2nd 6 13069 971 7.43 1.04

MC 10 13181 1720 13.05 5015
PSFEM 1st 10 12967 1619 12.49 1.02
PSFEM 2nd 10 13161 1619 12.30 1.16
PSFEM p2nd 10 13250 1619 12.22 1.04

MC 20 13895 4313 31.05 10062
PSFEM 1st 20 12967 3238 24.97 1.02
PSFEM 2nd 20 13744 3238 23.56 1.16
PSFEM p2nd 20 14099 3238 22.97 1.04
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