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ABSTRACT 
 

In MEMS devices, the behaviour of a fluid in small gaps 

between structures moving perpendicularly to each other is 

referred to as squeezed-film damping. This paper presents a 

reduced model of the non-linear Reynolds equation for a 

flexible structure using a modal representation, the only 

hypothesis made being small pressure variations. A change 

of variables is used so that the spatial differential operator 

appearing in the transformed Reynolds equation is the 

Laplacian, the eigenmodes of which are very simple to 

compute. This results in reduced construction costs 

compared to POD (Proper Orthogonal Decomposition) 

modes, for example. We first present this model with 

respect to the existing work. The derivation of the reduced 

model is then given and the approach is validated by 

comparing the results to those obtained with a finite 

difference model.   

 

Keywords: squeezed-film damping, amplitude effects, 

reduced-order model, modal representation. 

 

1    INTRODUCTION 
 

Correct modelling of damping is essential to capture the 

dynamic behaviour of a MEMS device. Our interest is 

squeeze-film damping which models the behaviour of a 

fluid in small gaps between a fixed surface and a structure 

moving perpendicular to this surface (Fig.1). The lateral 

dimensions of the surfaces are large compared to the gap 

and the system is considered isothermal. Squeeze film 

damping is then governed by the Reynolds equation [1]: 
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where G(x,y,t) is the distance between the moving and fixed 

surface, P(x,y,t) is the pressure and µ is the viscosity of the 

fluid. This equation is nonlinear and it is often coupled to 

the equation governing the mechanical behaviour of the 

structure. For small excitation frequencies or amplitudes it 

behaves as a nonlinear damper. For larger amplitudes or 

frequencies, the gas has no time to flow away and the 

pressure builds up creating a stiffening effect coupled to the 

damping effect. 

 

 
Fig. 1 - Schematic drawing of a microswitch. When a 

voltage is applied to the beam, the electrostatic forces 

cause the structure to pull-in. Damping, which influences 

the switching time, plays a key role in such devices. 

 

Most existing reduced-order models of the Reynolds 

equation solve the linearized Reynolds equation based on 

the hypothesis of small pressure variations, rigidity of the 

moving plate [2] or/and of small displacements [3,4,5]: 
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where G0 is the gap corresponding to the operating point, P0 

the ambient pressure, and p the pressure variation. 

In [4], Younis solves the nonlinear Euler-Bernoulli beam 

equation to determine an initial deformation and then 

linearizes the dynamic von Karman plate equations and the 

compressible Reynolds equation near this operating point. 

In [3] and [5], the authors consider flexible structures and 

use a modal projection method, the modes being the 

mechanical modes, to extract modal frequency-dependent 

damping and stiffening coefficients for a determined 

operating point. The Reynolds equation is integrated in the 

final model via these coefficients. To extend the case to 

large displacements, Mehner [5] gives an expression of 

these coefficients as a function of mechanical modal 

coordinates established by fitting of simulation data at 

different initial deformations. 

In the present paper, the nonlinear Reynolds equation is 

projected on pressure mode shapes, as in [6] and [7]. The 

approaches presented in [6] and [7] are valid for flexible 

structures with large displacements and large pressure 

variations. This is in contrast with our approach which is 

also valid for large displacements and flexible structures 

but assumes small pressure variations. However, it is much 

less costly to establish a reduced-order model for the 

squeezed- film with our method than with those presented 

in [6] and [7]. In [6], Hung and al. extract mode shapes 

from simulation data via proper orthogonal decomposition, 
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which requires a heavy complete finite element simulation. 

In [7], Rewienski and al. construct a projection base by 

concatenation of Krylov bases extracted from finite 

difference models linearized around different operating 

points chosen along a training trajectory. Our technique is 

based on a transformation of (1) through a change of 

variables so that the spatial differential operator does not 

depend on time, assuming small pressure variations. The 

transformed equation involves only the Laplacian, the 

eigenmodes of which are used. This is an advantage 

compared to the heavy construction cost implied by either 

the complexity of the finite element simulations [6], the 

number of them [5] or the necessity of a training trajectory 

[7].  

In the next section, we show how the Reynolds equation 

may be transformed into an equation with a time-

independent spatial differential operator. The resulting 

reduced-order model is then compared to a finite-difference 

model of the Reynolds equation. 

 

2 PRINCIPLE 
 

2.1 Transformation of the Reynolds 

equation 

Let us consider a fixed two-dimensional domain Ω , with 

border Ω∂ , spatial coordinates x  and y  and time 

coordinate t . In the case of small pressure variations, the 

Reynolds equation on that domain is: 
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where µ  is the fluid viscosity, 0P  is the ambient pressure, 

G  is the distance between the flexible structure and the 

substrate and p  is the pressure variation. The boundary 

conditions for (3) are usually chosen as:  

 

( ) Ω∂∈= MMp ,0 . (4) 

In order to solve (3) for the pressure variation, one first 

transforms it in the following way. Let us assume: 

 

( ) ( )tyxGtyxp ,,,, 2/3 ϕ−= . (5) 

Equation (3) then becomes:  
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Dividing by 2/3G  yields: 
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The spatial differential operator appearing in (7) is the 

Laplacian, the eigenmodes of which do not depend on time. 

Thus, (7) is amenable to classical methods of reduced-order 

modelling, such as Fourier’s method (i.e. modal analysis).  

 

2.2 Modal analysis of the transformed 

Reynolds equation 

One looks for a solution of (7) in the form: 
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With 
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And 

 

( ) Ω∂∈= MMk ,0ϕ . (10) 

Finding these functions is a fairly routine calculation. For 

example, for a rectangular domain: 
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where 
21 ,kkA  can be chosen so that the modes verify the 

orthonormality property: 
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For complex geometries, the mode shapes may be found 

using finite element analysis, for example. 

Now, the right-hand side of (7) can be expanded to: 
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Since only small pressure variations are considered, (7) 

simplifies to: 
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Assuming (8-10), and projecting on lϕ , (14) becomes: 
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A reduced model for the squeezed-film damping of a 

flexible structure assuming large displacements and small 

pressure variations is thus: 
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With 
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One may also rewrite (16) by letting Asu = -f: 

 ( )fuHA
u += −1

dt

d
. (20) 

Matrices H  and A  and vector f  may be calculated or 

approximated once and for all for a given structure as a 

function of, say, the mechanical modes.  

 

3 RESULTS 

 
We demonstrate the validity of the reduced-order model by 

comparing its results to those of a finite difference model of 

(3) for the forced excitation of a beam. Let us consider a 

beam clamped at both ends, with length L=500 µm, width 

W=50 µm and gap G0= 3 µm. For a rectangular domain, the 

eigenmodes of the Laplacian are given by (10). We force 

the displacement of the beam at frequency f=3 kHz with an 

amplitude of 0Gα , i.e.: 

 

( ) ( ) ( )( )ftxwGtxG πα 2sin1, 10 −= , (21) 

 

where w1(x) is the first mechanical mode of the (linear) 

Euler-Bernouilli beam. Equation (16) is then solved using 

an implicit Euler scheme. The same numerical integration 

scheme is used for the finite difference model. Fig. 2 shows 

the pressure at the midpoint of the membrane calculated 

with the finite difference model with a 50×50 mesh, a time 

interval of two periods and 200 time-steps, for 4.0=α . We 

see that the maximum pressure variation is on the order of 

10/0P , which corresponds to the limit of validity of both 

models. We show in Fig. 3, the relative error between the 

proposed model (using 2×2 modes) and the finite difference 

model for several values of α . The relative error is defined 

as the relative quadratic error between the projections of the 

pressures calculated with both models on w1(x), i.e.  
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Fig. 2 - Plot of the pressure variation at the midpoint of the membrane for 4.0=α . 
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Fig. 3 - Plot of the relative error between the finite difference model and the reduced-order model. 

 

 

 

We see that there exists a constant error term of about 3%, 

even for very small values ofα . This can be reduced by 

diminishing the step size and by refining the finite 

difference mesh. As α  increases, the difference between 

the two models becomes more marked (although it remains 

quite small). At the limit of validity of the two models, the 

total relative error is under 7%. The corresponding squeeze 

number for 4.0=α  is about 100. 

 

4 CONCLUSION 

A reduced-order model of the Reynolds equation has been 

presented. It is valid for large displacements of flexible 

structures, within the limits of small pressure variations. 

The accuracy of the model was illustrated by comparing its 

results with those of a finite difference model. It can then 

be coupled to a mechanical model so as to extract 

resonance frequencies and quality factors of microbeam 

resonators [8] or switching times for electrostatic 

microswitches, for example. Further work should also 

concern the extension of the proposed approach to large 

pressure variations. 
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