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ABSTRACT

We numerically studied mixing in a barrier embed-
ded micromixer with an emphasis on the effect of pe-
riodic and aperiodic sequences of mixing protocols on
mixing performance. A mapping method was employed
to investigate mixing in various sequences, enabling us
to characterize mixing. Several periodic sequences con-
sisting of the four mixing protocols are chosen to in-
vestigate the mixing performance depending on the se-
quence. Chaotic mixing was observed, but with differ-
ent mixing performances significantly influenced by the
sequence and inertia. As for the effect of inertia, the
higher the Reynolds number the larger the rotational
motion of the fluid leading to faster mixing. We found
that a sequence showing the best mixing performance
at a certain Reynolds number is not always superior to
other sequences in a different Reynolds number regime.
A properly chosen aperiodic sequence results in better
mixing than periodic sequences.

Keywords: micromixer, mapping method, mixing pro-
tocol, aperiodic sequence

1 INTRODUCTION

We investigated in-depth mixing characteristics of a
barrier embedded micromixer (BEM) influenced by pe-
riodic and aperiodic sequences of mixing protocols for
varying Reynolds numbers. We choose four mixing pro-
tocols with specific cross sectional flow portraits cre-
ated by grooves and the position of a barrier. We ob-
tain periodic velocity fields by solving the incompress-
ible steady Navier-Stokes equations for the protocols
and create four mapping matrices for the Reynolds num-
ber investigated here. Once a mapping matrix for a mix-
ing protocol is created, the mapping matrix is used to
analyze mixing in a sequence consisting of a combina-
tion of the four protocols. We investigate mixing in both
periodic and aperiodic sequences. The mixing charac-
teristics depending on sequences of the four mixing pro-
tocols and inertia will be discussed in detail, showing
the progress of mixing both quantitatively and qualita-
tively using a mapping method and a measure of mixing
based on the intensity of segregation.

Figure 1: A typical periodic unit of a barrier embedded
mixer (BEM).

2 PROBLEM DEFINITION

2.1 Mixing protocols

Figure 1 shows one periodic unit of the BEM with a
barrier on the top surface of a rectangular channel and
12 grooves on the bottom. This channel design yields
two co-rotating flows with one hyperbolic point and two
elliptic points in the section with a barrier and a rotating
flow with an elliptic point in the other region without a
barrier [1,2]. The four mixing protocols depicted in fig. 2
are designed in such a way that they have particular
flow portraits, which are inspired by two-dimensional
lid-driven cavity flows as illustrated in fig. 3. The four
sets of streamlines shown in fig. 3 represent the overall
cross sectional flow characteristics of the four protocols,
respectively.

2.2 Governing equations

The periodic velocity field is obtained by solving
the steady incompressible Navier-Stokes equations rep-
resented by

ρu · ∇u +∇p− µ∇2u = 0 in Ω, (1)
∇ · u = 0 in Ω, (2)

where ρ denotes the density, u the velocity, p the pres-
sure, and µ the viscosity. The boundary conditions and
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Figure 2: Schematics of the four mixing protocols, P1,
P2, P3, and P4, seen from the top and front. The pro-
tocol P1 is a rectangular channel with grooves on the
bottom surface, while P2, P3, and P4 have a additional
barrier on the top surface giving rise to two co-rotating
flows. The gray and black areas represent grooves and
a barrier, respectively. Length unit: µm.
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Figure 3: Two-dimensional flow portraits of the four
protocols, (a) P1, (b) P2, (c) P3, and (d) P4, in overall
sense. The protocols P1 has one elliptic point and the
others, P2,P3, and P4, have two elliptic points and one
hyperbolic point, but with different lateral positions.

constraint equations are

u = 0 on Γw, (3)

Qi = −
∫

Γi

u · ndS on Γi, (4)

ui = uo on Γi and Γo, (5)

where Qi is the imposed flow rate through the inlet, n
the outward unit normal vector at the boundary Γi, ui

the velocity at the inlet node, and uo the velocity at the
outlet node. In the above equations (Eqs. (1)-(5)) Ω,
Γw, Γi, and Γo denote the entire bounded domain, the
solid wall boundaries, the inlet boundary, and the outlet
boundary, respectively. The Reynolds number is given
by Re = ρDhUa/µ, where Dh is the hydraulic diameter
of the rectangular channel and Ua the average velocity
at the inlet.

3 MAPPING METHOD

3.1 Mapping method

A mapping method [3] was employed to investigate
mixing in various sequences to qualitatively observe the
progress of mixing and also to quantify both the rate
and the final state of mixing. The mapping method de-
scribes the transport of materials (represented by the
concentration function varying from 0 to 1) from one
cross section to the next in channel flows. A matrix
called the mapping matrix stores information about the
distribution of fluid from one cross-section to the next
(spatially periodic flows), which arises due to a speci-
fied flow. Given periodic velocity fields as a solution of
the Navier-Stokes equations for the four protocols at a
fixed Reynolds number, mapping matrices for the pro-
tocols are computed and are used to analyze mixing in
a sequence consisting of a combination of the protocols.
The evolution of a concentration vector after n periods
Cn is computed in sequence as follows:

Ci+1 = ΦCi, hence Cn = (Φ(Φ(. . . (ΦC0

︸ ︷︷ ︸
n times

)))). (6)

where Φ is the mapping matrix. Thus, the mapping
matrix is calculated only once and is utilized a number
of times to study the evolution of concentration in the
flow field. For validation of the mapping method and
other details, we refer to [3-5] and references therein.

3.2 Measure of mixing

We quantify the progress of mixing by the intensity
of segregation Id of the concentration ci at N discrete
points. The intensity of segregation is defined as follows:

Id =
1

c̄(1− c̄)
1
N

N∑

i=1

(ci − c̄)2, (7)

where c̄ is the average concentration. The intensity of
segregation (Id) is a measure of the deviation of the local
concentration from the ideal situation (perfectly mixed),
which represents a homogeneous state of the mixture.
In the mixing analysis, we define a mixing quality Q,
defined as Q = 1 − Id, as a measure of mixing. In a
perfectly mixed system, Q = 1, while in a completely
unmixed system, Q = 0.

4 RESULTS

4.1 Periodic sequences

We begin with periodic sequences composed of a re-
peating unit, which may be one mixing protocol or a
set of protocols. We propose five periodic sequences as
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Figure 4: Evolution of mixing patterns at Re=0.01. The
color contours represent the concentration at several
down-channel positions z=4, 10, 20, and 30L, for the
four periodic sequences. The concentration at z=0 is
plotted at the top of the column.
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Figure 5: Evolution of mixing patterns at Re=30. The
color contours represent the concentration at several
down-channel positions z = 4, 10, 20, and 30L, for the
four periodic sequences.

follows:

P11 : 111111 · · ·111111, (8)
P12 : 121212 · · ·121212, (9)
P34 : 343434 · · ·343434, (10)
P32 : 323232 · · ·323232, (11)
P42 : 424242 · · ·424242, (12)

where a boldface number 1 represents the protocol P1, 2
the protocol P2, and so on (see fig. 2). The first sequence
P11 is just a channel with slanted grooves without any
mechanism to induce chaotic advection, while the others
are chaotic micromixers which will be discussed shortly.
We use P12 as a reference state to compare relative
mixing performances of proposed sequences.

First introduced are the results of mixing at Re =
0.01 where flow is mainly governed by the viscous force
only. Figure 4 shows the evolution of mixing patterns
for the four periodic sequences. The picture on the top
of fig. 4(a) depicts the initial unmixed state at the in-

let, z = 0, and the following four pictures show the
progress of mixing along down-channel positions, z = 4,
10, 20, and 30L. At the inlet, the concentration at nodal
points ci is either 0 or 1 depending on the species of the
fluid. Assuming two fluids are introduced through a T-
type inlet channel, the concentration ci equals 0 in the
left half and 1 in the right half (see the first picture of
fig. 4(a)). At the interface of two fluids, the value of
ci is 0.5 representing a completely mixed state. Mixing
in the protocol P12 is almost chaotic except for sev-
eral unmixed islands. As for P34, we see a unmixed
island at the center, which indicates the existence of
a KAM (Kolmogorov-Arnold-Moser) boundary at that
location. The other two sequences, P32 and P42, are
globally chaotic except the rim of the rectangular chan-
nel, better than P12 and P34 from the viewpoint of the
existence of unmixed islands. The mixing performance
of P32 seems to be the best among the five sequences
in the creeping flow regime using the mixing quality Q
as a mixing measure.

We also investigate the effect of inertia on the flow
and mixing characteristics for the same periodic sequences.
Here, the effect of inertia on the mixing performance will
be studied for the flow with Re=0.01, and 30. From the
concentration plots showing mixing patterns in fig. 5,
we are able to observe the increased rotational motion
of fluids with higher inertia compared with fig. 4. As the
Reynolds number increases, the unmixed islands shown
in figs. 4(a) and 4(b) for the two sequences, P12 and
P34, are completely disappeared indeed as shown in
figs. 5(a) and 5(b), demonstrating a positive influence
of inertia on mixing in the two sequences.

4.2 Aperiodic sequences

It is known that aperiodic flows generate widespread
chaos even under conditions where periodic flows gen-
erate minimal or no chaos [6]. Motivated by this fact,
we conduct simulations in aperiodic sequences attempt-
ing to find out a sequence of protocols which results in
better mixing compared with periodic sequences.

We create aperiodic sequences at Re=0.01 and 30
such that at a given mixing protocol the next proto-
col is chosen to give the best mixing state among the
four candidates. Two aperiodic sequences chosen by the
above-mentioned scheme at Re=0.01 are

AP1 : 32323 23233 23323 31232 22233 31222, (13)
AP2 : 42243 22333 33333 42222 43331 42231, (14)

where an aperiodic sequence AP1 start with P3 and
AP2 with P4. At Re=30, two other aperiodic sequences
(starting from 3 and 4) generated in the same way are
given by

AP3 : 32323 42222 22222 24222 21222 12211, (15)
AP4 : 43323 42222 22222 22222 21412 12111. (16)
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Figure 6: Evolution of mixing quality Q of five periodic sequences at three different Reynolds numbers. The abscissa
is a down-channel position z scaled by the length of one mixing protocol L.
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Figure 7: Evolution of mixing quality Q of two aperiodic sequences at two Reynolds numbers. The mixing quality Q
of two periodic sequences also plotted for comparison. The abscissa is a down-channel position z scaled by the length
of one mixing protocol L.

The evolution of mixing quality Q with the down-
channel position z is plotted in fig. 7 together with the
results from two periodic sequences, P12 as a reference
and another sequence showing the best performance at
each Reynolds number. The two aperiodic sequences
found at two Reynolds numbers show better mixing per-
formance (measured by Q) than the reference sequence
(P12) and the best sequence at each Reynolds number,
implying the existence of an optimum sequence.

5 CONCLUSIONS

We investigated the effect of mixing protocols con-
stituting periodic and aperiodic sequences in a barrier
embedded micromixer using a mapping method. Given
functional modules (called mixing protocols) with spe-
cific flow portraits, mixing in several periodic and ape-
riodic sequences composed of those protocols are an-
alyzed for the varying Reynolds number. Both mix-
ing rate and final mixing state of the chosen sequences
show noticeable differences compared with the results
from the original BEM. As for the effect of inertia, the
higher the Reynolds number the faster and the more
uniform mixing (within the limit of micromixers inves-
tigated in the present study). A sequence showing the

best performance at a low Reynolds number does not al-
ways guarantee the best performance at other Reynolds
number. A properly chosen aperiodic sequence indeed
shows better mixing than mixers consisting of periodic
sequences.
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