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ABSTRACT 
 
This paper reports experimental results for a 

parametrically excited micro-ring resonator. Actuation and 
sensing are performed electrostatically. The equation of 
motion for the electrostatically actuated MEMS ring 
resonator is shown to contain a stiffness modulating term 
which, when modulated at a frequency near twice a natural 
frequency of the resonator, results in parametric resonance. 
Frequency sweeps, centered on approximately twice the 
measured resonant frequency of the device, were performed 
at various voltages and the parametric resonance was 
observed electrically at half the excitation frequency. This 
data was used to map the 'boundary curve’, demarcating the 
regions of stability and instability, and was compared with 
theoretical predictions. Ultimately, the parametric 
excitation will be combined with harmonic forcing in order 
to increase the Q-factor of the ring resonator by at least two 
orders of magnitude. 
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1 INTRODUCTION 
 
MEMS resonators are being developed today for a 

variety of applications. Some applications include inertial 
sensors, sensors for biological sensing, filters for RF 
applications and oscillators for timing applications. 

 
     First order parametric resonance occurs when a system 
parameter is modulated at a frequency very close to twice 
the natural frequency of the system.The phenomenon of 
parametric resonance has been observed and investigated 
extensively over the past century[1,2].Parametric 
resonances, owing to their unstable nature were previously 
treated as unwanted vibrations. Recently, the parametric 
instability phenomenon has been exploited for several 
applications. Parametric resonance for MEMS applications 
has been recently reported in [3, 4, 5, 6 and 7]. 

 
In this work, electrostatic transduction has been 

employed for both actuation and sensing of the MEMS 
resonator, thus making the excitation scheme suitable for 
many resonant MEMS sensors. One of the major issues 
facing MEMS sensors employing electrostatic transduction 
for both actuation and sensing is electrical feed-through. 
This corrupts the sense signal and limits the sensitivity of 

the sensor. A combined harmonic forcing and parametric 
excitation scheme increases the “effective” Q-factor thus 
permitting reduced forcing levels. Reducing the forcing 
level reduces the electrical feed-through at the forcing 
frequency by the same order. A control strategy for the 
combined harmonic forcing and parametric excitation 
scheme with the main aim of reducing feed-through for a 
MEMS gyroscope sensor has been proposed in [5]. 
However, this paper is focussed on experimental results 
obtained by the parametric-only excitation of the MEMS 
ring resonator. 

 
Here, the MEMS ring resonator has been used as a 

vehicle to demonstrate the principle of parametric 
resonance. The ‘boundary curve’, which shows the 
relationship between the parametric excitation voltage and 
frequency, demarcating regions of stable and unstable 
vibration, was obtained experimentally. The equation of 
motion is shown to be of the form of an inhomogeneous 
Hill’s equation. The method of harmonic balance was used 
to analyse the equation and predict the ‘boundary curve’. It 
is shown that the theoretical predictions and experimental 
results demonstrate significant similarity.  

 
2 THE MICRO-RING RESONATOR  

 
Figure 1 shows the ring supported by a suspension. The 

ring has a radius a, width b and thickness d .The ring and 
the electrode encompassing an angle 2α  are separated by a 
small air gap h0. The ring is held at a fixed potential. Since 
a>> h0 the capacitive plates formed between the biased ring 
and electrode may be considered flat. When a periodic 
voltage is applied to the electrode, a periodic electrostatic 
force results between the electrode and the ring and forces 
the ring into vibration. Table 1 shows the dimensions of the 
ring resonator. 

 

 
 

Figure 1: The ring resonator 
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a (mm) 4 
b ( µ m) 175 
d ( µ m) 100 
h0 ( µ m) 5 
α (rad) /16π  

 
Table 1: Ring resonator dimensions 

 
The electrodes for actuation are chosen to excite the n=2 

in-plane flexural mode of vibration of a thin circular ring. A 
detailed description of the electrode configuration for the 
micro-ring resonator can be found in [5, 6]. A photograph 
of the micro-ring resonator with the electrodes used for the 
drive and sense (differential sensing) is shown in Figure 2. 

 

 
 

Figure 2: The drive and sense electrodes 
 

Figure 3 shows the capacitive gap of the device between 
the ring and the electrode. The gap size is not constant. This 
may be due to a non-optimised etch process. 

 

 
 

Figure 3: Gap between ring and electrode 
 
 
 

 

3 EXPERIMENT  
 
The MEMS ring resonator along with the associated 

sense circuitry was housed in a vacuum chamber. The 
pressure was maintained at 1*10^-3 mBar. Modal analysis 
of the resonator was performed electrically to determine the 
natural frequencies and the Q-factors. A Data Physics 
Dynamic Signal Analyzer was used for electrical 
characterization purposes. The values of the resonant 
frequency and the Q-factor of the n=2 flexural mode of 
vibration of the thin ring for an input excitation of 
amplitude 1Vpk were noted to be 18285 Hz and 1143 
respectively. Figure 4 shows the frequency response of the 
MEMS resonator for an input excitation of 1Vpk. 

 

 
 

Figure 4: Frequency response of the MEMS ring resonator 
 

The electrostatic force between the ring and the 
electrode is proportional to the square of the applied 
periodic voltage and may be shown to contain a term which 
results in periodic modulation in the ring stiffness. 
Parametric resonance can be achieved in such a system by 
ensuring that the frequency of oscillation ω  of the 
excitation voltage is related to the natural frequency αω  of 
the system by the condition 
 

2
l
αωω ≈  where l=1, 2, 3...        (1) 

 
In this work, only l=1, i.e. first order parametric 

resonance has been considered and experimentally 
demonstrated. However, higher order parametric 
resonances can be realized experimentally and has been 
demonstrated in [7], but they would need higher excitation 
voltages and are not considered in the present experiment. 

 
Capacitive sensing of the response vibration with the 

sense electrodes necessitates a fixed DC bias Vdc on the 
ring. The periodic voltage function for parametric 
excitation was chosen to be a sine waveform. A DC bias of 
25 V was used in the experiment. The excitation voltage 
across the capacitive gap is of the form  sin( )dcV tη ω+  . 
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The electrostatic force being proportional to the square 
of the applied periodic voltage, would then be proportional 
to  
 

( )
2

2 1 cos(2 ) 2 sin( )
2dc dcV t V tη ω η ω+ + +  

  
Frequency sweeps centered on approximately twice the 

measured resonant frequency were performed at various 
values of voltage amplitudes of the sine wave. This resulted 
in responses at half the excitation frequency. These were 
mapped to obtain the ‘boundary curve’. It can be shown 
that this ‘boundary curve’ demarcates regions of stability 
and instability. The experimentally determined ‘boundary 
curve’ is shown in Figure 5. The circles in the figure 
represent the experimentally determined ‘boundary curve ’. 

 
4 MODELLING AND ANALYSIS  

 
The equation of motion of the micro-ring resonator may 

be shown to be of the form 
 

[ - ( )] ( ).mq cq k K t q F t+ + =                                      (2)  
 

The terms m, k and c are modal mass, stiffness and 
viscous damping terms of the ring. The terms K(t) and F(t) 
are the electrostatic stiffness and the forcing terms 
associated with electrostatic actuation and K(t)q+ F(t) 
constitutes the total electrostatic force due to the electrodes. 
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Equation (2) represents the equation of motion for an 

actuated mode of vibration of the micro-ring resonator and 
is of the form of an inhomogeneous Hill’s equation. 
 

The periodic voltage excitation is of the form used in 
experiment 
 
 ( ) sin( )dcV t V tη ω= +                                     (3) 
 

There are various approximate methods to obtain the 
boundary of instability in a parametrically excited system. 
The method of harmonic balance is one such approximate 
method which has been used in the present analysis to 
predict the ‘boundary curve’. This method is simple and 
particularly suitable for the case of simple parametric 
resonance dealt with here [8]. 
 

The method of harmonic balance involves assumption 
of a periodic solution, usually in the form of a Fourier 
series. Here, we assume the solution to be of the form 
 

( ) cos( ) sin( )
2 2

q t A t B tω ω
= +         (4) 

 
Substitution of equations (3) and (4) into equation (2) 

and equating the coefficients of the harmonic components 

having frequency 
2
ω to zero yields 
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                      (5) 

 
where 
 

2 2
2 2

11 4 2 2dcm DV DFα
ω π η

ω= − + − −  

 
12 dcm DV Fαζωω η= +  

21 dcm DV Fαζωω η= − +  
 

2 2
2 2

22 4 2 2dcm DV DFα
ω π η

ω= − + − −  

 
D and F are geometrical constants. The condition for 

obtaining a non-trivial solution is 
 

11 12

21 22
0

m m
m m

=                                       (6) 

 
Equation (6) yields the relationship between the 

excitation frequency (ω ) and excitation voltage (η ). This 
relationship is plotted as the ‘boundary curve’ and is shown 
in Figure 5. The dots in Figure 5 indicate the analytically 
obtained boundary curve. 

 
To obtain the analytical ‘boundary curve’ in Figure 5, a 

Q-factor 1140≈  and a natural frequency 18.3kHz≈  was 
used. From Figure 3, it can be seen that the capacitive gap 
size is not constant and it was estimated to vary from 6.6-
8.4 µm. The boundary curve shown in Figure 5 corresponds 
to the average capacitive gap size of 7.5 µm . It can be seen 
that the experimentally measured and predicted boundary 
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curves are similar. As the amplitude of the parametric 
excitation described by K(t) is inversely proportional to the 
cube of the capacitive gap, uncertainty in capacitive gap ho 
must be minimised in order to improve the comparison. 
This requires optimisation of the etch process used to form 
the gap. 

 

 
 

Figure 5: The ‘boundary curve’ 
 

5 CONCLUSION 
 
First order parametric resonance in a micro-ring 

resonator was realized experimentally and the ‘boundary 
curve’ was plotted. The equation of motion was analyzed 
using the method of harmonic balance, which proved to be 
a simple method to analyze first order parametric 
resonances. The boundary curve was obtained analytically. 
Owing to a largely varying capacitive gap between the ring 
and the electrode, it was shown that the experimental and 
the theoretical boundary curves agree to satisfactory level 
for the capacitive gap having an average value 7.5 µm. The 
analytical model for parametric-only excitation is therefore 
concluded to agree with experiment. Further work is 
underway to combine the parametric excitation with 
harmonic forcing in an attempt to controllably amplify the 
Q-factor of any mode of vibration of the ring resonator as 
shown through simulation in [5]. Fabrication of new 
devices with an optimized etch is also underway. 
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