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ABSTRACT 
We present a quantum CPU (central processing unit) which 
is based on the quantum gate set. Using the Von Neuman 
model, the quantum CPU has development on a classical 
Digital Signal Processor (DSP TI6711). The DSP simulated 
different gates, as the Feynman gate, and the set of the 
different gates make possible the quantum CPU. 
Generically, hardware of the quantum CPU are modeled in 
terms of quantum spins (qubits) that evolve in time 
according to the time-dependent Schrodinger equation 
(TDSE). Furthermore, we will try quantum error-correcting 
code to fight de coherence and operational errors. 
 
Keywords: processing unit simulator, Short’s 
factorization, , parallel processing, pipeline processing 
 

INTRODUCTION 
 
The organization of a digital computer talks about to the 
logical units that compose it (like the ALU, Registers, 
Control, the unit of memory and the unit of input/output), 
the functions that make, her operation and the form in 
which they are related and communicates with others. The 
architecture of the Quantum Central Processing 
Unit(QCPU)  focuses in the form to construct each one of 
these units logics so that they make the functions specified 
by his organization, as well as the way in which these units 
are going to communicate to interact among them.  
 
However, simulations often require more computational 
power than is usually available on sequential computers. 
Therefore, we have developed the simulation method for 
parallel computers. That is, we have developed a general-
purpose simulator for quantum algorithms and circuits on 
the parallel computer, Symmetric Multi-Processor. 
 
A quantum computer consists of quantum set gates which 
obey the laws of quantum mechanics. The complexity of a 
quantum system is exponential with respect to the number 
of particles. Performing computation using these quantum 
particles results in an exponential amount of calculation in a 
polynomial amount of space and time [1] [2] [3]. This 
quantum parallelism is only applicable in a limited domain. 
Prime factorization is one such problem which can make 
effective use of quantum parallelism [4]. This is an 

important problem because the security of the RSA public-
key cryptosystem relies on the fact that prime factorization 
is computationally difficult [5]. Errors limit the 
effectiveness of any physical realization of a quantum 
computer. These errors can accumulate over time and 
render the calculation useless [6]. The simulation of 
quantum circuits is a useful tool for studying the feasibility 
of quantum computers [7]. Simulations inject errors at each 
step of the calculation and can track their accumulation. 
Because of the exponential behavior of quantum systems, 
simulating them on conventional computers requires an 
exponential amount of operations and storage. For this 
reason, to simulate problems of interesting size we must 
employ the use of parallel supercomputers. In this paper we 
describe a pipeline simulator (using the Digital Signal 
Processor) which models the accumulation of errors in a 
Quantum Central Processing Unit (QCPU).  
 

METHODOLOGY 
 
The von Neumann architecture is a computer design model 
that uses a single storage structure to hold both instructions 
and data. The term describes such a computer, which 
implements a Universal Turing machine, and the common 
"referential model" of specifying sequential architectures, 
in contrast with parallel architectures. 
 
The separation of storage from the processing unit is 
implicit in the von Neumann architecture. The term "stored-
program computer" is generally used to mean a computer of 
this design (Figure 1). 
 
Iit’s possible to be observed in figure 1, the components 
that they integrate to the model are:  
 
Arithmetic Logic Unit (ALU), Memory, and Control, it is 
also observed that to the ALU they integrate a registry 
called accumulator, and we can see the input and output. 
The memory and control it’s an important component of the 
Von Neuman model. 
 
For the development of the ALU, we use an adder, using 
the Feynman gate. A 2*2 Feynman gate, also called CNOT, 
output is given by the equation (A, B) ÷ (P = A, Q = A r B).  
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This gate is one through because it passes one of its inputs. 
Every linear reversible function can be built by using only 
2*2 Feynman gates and inverters (Figure 2). 
 

 
 

Figure 1. Von Neuman Model 
 
 The detailed cost of a reversible gate depends on 
any particular realization technology of quantum logic. 
According to Perkowski et al. , it is assumed that the [8] 
cost of every 2*2 is the same. A 1*1 cost nothing, since it 
can be always included to arbitrary 2*2 gate that precedes 
or follows it. Thus, every permutation quantum gate will be 
build from 1*1 and 2*2 quantum primitives and its cost 
calculated as a total sum of 2*2 gates. 
 

 
Figure 2. Feynman gate, used as adder for Von Neuman 

Model 
 
Part of the ALU it’s some gates set like: 
 
Toffoli gate: A 3*3 Toffoli gate, also called controlled 
controlled-NOT (CCNOT), output is given by the equation 
(A, B, C) ÷ (P = A, Q = B, R = ABr C). This gate is two 
through because two of its outputs are identical of its 
inputs. Using the well known realization of Toffoli gate 
with truly quantum 2*2 primitives, as shown in Figure 3 
according to Perkowski et al. , the cost of Toffoli gate is 
[10] five 2*2 gates, or simply, 5. In Figure 3 V is a square-
root-of-NOT gate (unitary matrix V) and V is its hermitian. 

Thus +VV creates a unitary matrix of NOT gate and VV = 
1 (an + + identity matrix, describing just a quantum wire).   
 

 
Figure 3. Toffoli gate 

 
Fredkin gate: A 3*3 Fredkin gate output is given by the 
equation (A, B) ÷ (P = A, Q = A*B + AC, R = A*C + AB). 
This gate is conservative, that is, the Hamming weight 
(number of logical ones) of its input equals the Hamming 
weight of its output. The Fredkin gate is sometimes called 
the controlled permutation gate (Fig. 4). The cost of 
Fredkin gate is exactly the same as the cost of Toffoli gate 
and not more than of it, as some [8] authors assumed and as 
may be suggested by classical binary schema of such gates, 
where the Toffoli gate includes a single Davio gate, while 
the Fredkin gate includes two multiplexers. 
 
 

 
Figure 4. Fredkin Gate 

 
The Register Accumulator on the Von Neuman Model is 
the Qbit state in the register give for the next equation [9]:  
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That is, the state of an n-qubit register is represented by a 
unit-length complex vector on nH

2
. In a classical 

computer, to store a complex number α = x + iy, one 
require to store a pair of real numbers (x, y).  
 

The system are modeled in term of Quantum Spin 
(QBits), that envolve in time according to the time-
dependant Schrödinger equation (TDSE) 
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in units such that ¯ 1=h   and where  
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|Φ(t)   = a(↓, ↓, . . . , ↓; t)| ↓, ↓, . . . , ↓  + 
+ a(↑, ↓, . . . , ↓; t)| ↑, ↓, . . . , ↓  + . . . 
+ a(↑, ↑, . . . , ↑; t)| ↑, ↑, . . . , ↑      (2) 

 
 
describes the state of the whole QC at the time t. The 
complex coefficients ( ) ( )tata ;,...,,,...,;,...,, ↑↑↑↓↓↓  
completely specify the state of the quantum system. The 
time-dependent Hamiltonian H(t) take the form [11] 
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Where the first sum runs over all pairs P of QBits, 

α
jS denotes the α-th component of the spin ½ operator 

representing the j-th QuBit, ( )tJ kj α,,  determines the 
strength of the interaction between the QBits labeled j and 
k, ( )th j 0,,α and ( )th j 1,,α  are static and periodic field 
acting on the j-th spin respectively. The frequency and the 
phase of the periodic field are denoted by α,jf  and αϕ ,j . 
The number of QBits is L and the dimension of the Hilbert 
space LD 2= . Hammiltonian (Eq 3) is sufficiently general 
to capture the salient features of the most physical models 
of the QC. Interactions between QBits that involve different 
spin components have been left out in equation 3 because 
we are no aware of a candidate technology of QC where 
these would be important. Incorporating these interactions 
requires some trivial additions to the simulator program. 

 
Procedures to construct unconditionally stable, accurate and 
efficient algorithms to solve the TDSE of a wide variety of 
continuum and lattice models have been reviewed 
elsewhere [12, 13]. A detailed account of the applications 
of this approach to two-dimensional quantum spin models 
can be found in [14]. According to the equation 2 the time 
evolution of the QC, the solution of TDSE (Equation 1), is 
determined by the unitary transformation 
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where exp denotes the time-ordered exponential function. 
Using the semi-group property of U(t+τ,t) we can write  

 
( ) ( ) ( ) ( )ttUttUmtmtUttU ,,2...)1(,, δδδδδτ +++−++=+  (5) 

 
where τ=mδ(m≥1). In general the first step is to replace 
each U(t+(n+1)δ,t+nδ) by symmetries Suzuki product-
formula approximation [13,14].  

 
DEVELOPMENT 

 
For the development of the project, we use the DSP TI 

TMS6711, with architectural optimizations to speed up 
processing. This DSP can be connected on classical 
personal computer for transfer the data between them, and 
the architectural features is the next: 
 
Program flow: 

• Floating-point unit integrated directly into the 
data-path.  

• Pipelined architecture  
• Highly parallel accumulator and multiplier  
• Special looping hardware. Low-overhead or Zero-

overhead looping capability  
 
Memory architecture: 

• DSPs often use special memory architectures that 
are able to fetch multiple data and/or instructions 
at the same time:  

• Harvard architecture  
• Modified von Neumann architecture  
• Use of direct memory access  
• Memory-address calculation unit  

 
Data operations: 

• Arithmetic is often used to speed up arithmetic 
processing.  

• Single-cycle operations to increase the benefits of 
pipelining.  

 
Instruction sets: 

• Multiply-accumulate (MAC) operations, which are 
good for all kinds of matrix operations, such as 
convolution for filtering, dot product, or even 
polynomial evaluation (see Horner scheme, also 
fused multiply-add).  

• Instructions to increase parallelism: SIMD, VLIW, 
superscalar architecture.  

• Specialized instructions for modulo addressing in 
ring buffers and bit-reversed addressing mode for 
FFT cross-referencing.  

• Digital signal processors sometimes use time-
stationary encoding to simplify hardware and 
increase coding efficiency  

 
This DSP can be programed with  a friendly Software 

(Code Composer Studio) with the with the algorithms of the 
quantum mechanics systems and numerical methods to 
solve the states of the QBits. 
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DISCUSION 
 

 This work presents a proposal on a QCPU, using 
the Von Neuman Model. Where all the components of the 
Von Neuman Model can be simulated, but the only difficult 
on make the simulation’s is the integration of all units that 
integrate it (like Memory, ALU, and control). The, control 
unit, in classical Von Neuman Model, is a unit sequencer 
that handled all units. But in QCPU, these units will be 
complex, due to the parallelism that the QBit´s work. And 
for this moment we don’t have a candidate model for this 
unit. 
 

CONCLUSION 
 

 We keep working on make a better proposal for a 
QCPU, the next step it’s: 
 

• to make a better selection on control unit hardware 
• make a good selection of Qgates for the operation 

of quantum circuits 
• THE set instruction for the good operation of the 

QCPU 
• To improve the simulation on better classical 

computers 
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