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ABSTRACT 
 

Extraction of target molecules from a primary liquid and 

concentration of these molecules in a secondary liquid are 

now recognized as essential operations before recognition 

and analysis processes. We focus here on a system 

constituted of two adjacent microchannels geometrically 

separated by vertical micro-pillars.  The primary and 

secondary liquids are chosen immiscible, and vertical 

interfaces attached to the pillars separate the two fluids. The 

system must be designed to withstand the largest possible 

interfacial area to favor molecule transfer from primary to 

secondary fluids. The analysis of the stability of the 

interface is then the key for the design of the system. In this 

work, we propose a model for the stability of interfaces 

attached to circular and lozenge pillars.  

  

Keywords:  interface stability, pillars, pinning, transport, 

molecule transfer. 

 

1 INTRODUCTION 
 

We focus here on the transfer and concentration of 

macromolecules from a flowing primary carrier fluid to a 

secondary storage liquid. In the literature such types of 

concentration microdevices have already been proposed [1]. 

We analyze the case sketched in figure 1 where the carrier 

fluid and the storage liquid are flowing side by side, 

separated by interfaces sustained by micro-pillars. The two 

immiscible fluids should not mix to form an emulsion, for 

two reasons: the system should make the economy of a de-

mixing system, and on-line detection is facilitated. The best 

efficiency of such devices is obtained for a largest possible 

interfacial area. However, it is observed that, for a given 

geometry of the pillars, there are only a limited number of 

interfaces that can be stable. In this work, we investigate 

the stability of the interfaces in function of the geometry 

(channel length and width, morphology of the pillars) and 

flow parameters (flow rates in the channels). We deduce an 

expression for the maximum stability length and we 

propose some recommendations for improving such a 

microsystem. 

 

2 MODEL 
 

The two fluids are flowing in parallel with different 

velocities, and their pressure evolves nearly independently 

– as long as the interfaces remain stable. Because of the dif-  

 

 

ferences of flow rate and geometry, a pressure difference 

between the two channels builds up.  Hence the interfaces 

are submitted to two constraints: a normal pressure due to 

the pressure difference between the two channels, and a 

tangential stress exerted by the friction of the flowing 

fluids.    

Carrier liquid

Storage liquidChannel for optic detection

Pillars

 
Fig.1. Schematic of the microsystem. 

 

A calculation of the flow with the Comsol numerical 

software shows that the tangential stress on the interface is 

much less than the normal stress (fig. 2). Hence, in the 

following we focus on the normal stress.  

 
Fig.2. Velocity profile, pressure contour-lines and streamlines in a 

channel limited by lozenge pillars. 

 

Taking into account the outlet channels (fig. 3), and using 

the Washburn [2] equation for the pressure drop, modified 

by the Purday, Shah & London expressions for rectangular 

channels [3,4],  the pressure is function of the distance to 

the channel entrance, noted x, according to 

 

( ) ( ) ( )DQgcxbaQfcPxP 0 ,,,,, ηη +=−         (1) 

 

with the notations of figure 3, and where η is the liquid 
dynamic viscosity. The functions f and g are respectively 

the pressure drop functions for the “transfer” channel and 

the outlet channel.  The pressure difference across the 

interface in a cross section of the transfer region is then 
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Fig.3. Schematic of the flow parameters. 

 

If we explicit the functions f and g, equation (2) yields 
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If we can determine the maximum pressure difference P1-P2 

for which an interface remains stable, we obtain the 

maximum theoretical stability length, sketched in figure 4. 

The maximum pressure that an interface can withstand has 

been analyzed analytically and numerically for geometries 

like lozenges and circles (fig.5). The interface is always 

anchored to the edges of the lozenge pillars, or satisfies the 

Young constraints for circular pillars.  

 

a. Lozenge pillars 
 

The stability approach for lozenge pillars is identical to 

Tsori’s approach for wedged pipettes [5], and we will not 

reproduce the equations here. It suffices to say that the 

interface is always anchored to the pillar edges. The 

maximum pressure difference that the interface can sustain 

(if the pillar edges are perfectly straight) is given by the 

Laplace equation for a minimum curvature radius 

 

 
δ
γγ∆ 2

R
P ==max          (4) 

 

where R is the minimum curvature radius and δ the distance 
between two pillar edges. 

Liquid 2
(storage liquid)

Inlet Liquid 1
(carrier liquid)

End of transfer region
Start of outlet channels

Rupture if P1-P2 > ∆Pmax

 
Fig.4. Sketch of the stability of the interfaces. The rupture occurs 

always at the beginning of the channel (under the condition of 

perfectly microfabricated pillars). 
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Fig.5. Interface position: (a) the interface is anchored to the pillar 

edge, (b) the interface adjusts to respect the Young constraint. 

Experimental photos (left) and Evolver calculation (right) [6]. 

 

b. Circular pillars 

 
In this case there is no pinning of the interface; the location 

of the triple contact line is determined by Young’s 

constraints. Using the notations of figure 6, we locate the 

position of the contact point M by its angle φ, and we have 

the following relation 

 

βϕ sinsin
2

Rr
h +=          (5) 

 

The angle β can be expressed in function of the two angles 

φ and θ by 
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Fig.6. Schematic of the location of the interface. O is the 

curvature center, T the intersection of the tangent with the median 

axis, and M the contact point. 

 

And we find 

 

ϕθβ −=                      (7) 

 

Substitution of (7) in (5) produces the curvature radius 
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The pressure difference across the interface is then 
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The important point now is to remark that the function 

∆P(φ) has a maximum; in other words, there is a position of 

the interface corresponding to a minimum curvature radius, 

i.e. to a maximum pressure difference. This position is 

determined by 

 

( )
0

P =
∂

∂
ϕ
∆

 

 

After soma algebra, we find that the solution is given by 
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And the maximum sustainable pressure is then 
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After examination of equations (10) and (11), we deduce 

that the maximum pressure difference is a function of the 

Young contact angle θ, the distance between two pillars 

centers h and the radius of the pillar r. 

 

c. Maximum length 
 

On a general standpoint, the horizontal pressure profiles P1 

and P2 along the channels are shown in figure 7. According 

to equations (1) and (3), the profile is piecewise linear, with 

a jump of the slope between the “transfer” region and the 

outlet channel. 
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Fig.7. Pressure profiles and determination of the length of 

interface stability. 

 
Examining the figure, we deduce that there is a maximum 

stability length corresponding to a pressure difference of 

∆Pmax. Depending on the lozenge or circular geometry, we 
use equations (4) or (11). Substitution in equation (3) leads 

to the maximum value of the length of the transfer channel 
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3 EXPERIMENTAL RESULTS 
 

Experiments have been conducted using microfabricated 

channels of silanized Ordyl. Lozenge and circular pillars 

(150 µm high) have been tested. Stability has been 

investigated for water-cyclohexane interfaces.  

 

a. Lozenge pillars 

 
Interfaces attach to the edges of the pillars, as predicted by 

the theory. When the pressure increases above the rupture 

threshold or if the edge is not perfectly sharp, the interface 
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slides along the sides of the pillars and carrier liquid 

invades the storage channel (fig. 8).    

 

Interface sliding on the pillar

 
Fig.8. Once the triple contact line has detached from the edge - 

under the effect of the pressure difference or of a defect in the 

edge of the pillar – the interface inevitably invades the 

neighboring channel. 

 

b. Circular pillars 
 

We observe that interfaces take the position predicted by 

the theory, as shown in figure 9. Above a limit angle φmax, 
the interface is propelled into the other channel.  

 
Contact point slides beyond the stability limit

Fig.9. When the pressure difference becomes larger than ∆Pmax, 
the contact slides beyond the limit position, the interface invades 

the neighboring channel. 
 

4 DISCUSSION  
 

Relation (12) shows that, in order to maximize the stability 

length Lmax, it is necessary (i) to reduce as much as possible 

the difference of pressure drop in the outlet channels, (ii) to 

minimize the pressure drop difference in the transfer region, 

and (iii) to have the larger possible rupture threshold ∆Pmax. 
The rupture threshold ∆Pmax depends essentially on the free 
distance between two neighboring pillars, on the interface 

tension between the two liquids, and on the shape of the 

pillars. Figure 10 shows a comparison of the rupture 

pressure threshold between lozenge and circular pillars. 
Comparison has been performed by considering same 

exchange surfaces and same free distances between two 

pillars. The pinning of the interface on the lozenge arêtes 

stabilizes the interface. 

However, the model assumes perfectly microfabricated 

pillars. In the reality, we have observed that defects on 

edges deteriorate the pinning of the interface and may lead 

to a more instable situation. This is the reason why the 

model somewhat overestimates the stability length. 

 
In conclusion, we can make the following 

recommendations: The outlet capillary tubes must be 

carefully designed (length and diameter adapted to the 

velocities) in order that their specific pressure drop is 

similar. It is advantageous to have the interfaces attached 

(pinned) to edges of the vertical pillars. However, if the 

quality of the edges is not satisfactory, the attachment is 

poor and sudden break up of the interfaces can take place. 

The smaller the size of the interfaces, the larger the pressure 

difference sustained by the interface. Hence, it is 

advantageous to reduce the size of the interfaces together 

with the size of the pillars. 

Lozenge pillars

Circular pillars

 
Fig.10. Comparison of stability between lozenge and circular 

pillars: maximum pressure difference ∆Pmax versus the distance 
between pillar centers.  
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