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ABSTRACT 

 
A bridging domain method for coupling continuum 

models with molecular models is described. In this method, 
the continuum and molecular domains are overlapped in a 
bridging subdomain, where the Hamiltonian is taken to be a 
linear combination of the continuum and molecular 
Hamiltonians. We enforce the compatibility in the bridging 
domain by Lagrange multipliers or by the augmented 
Lagrangian method. An explicit algorithm for dynamic 
solutions is developed. In this paper, the bridging domain 
multiscale method is employed to study nanotube-based 
composites. 
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1 INTRODUCTION 
 
Concurrent methods for coupling molecular dynamics 

models with continuum or quasicontinuum models are 
useful for studying local phenomena such as fracture. They 
permit the use of far fewer equations than in strict 
molecular dynamics models, since the resolution in the 
subdomain modeled by continuum mechanics can be far 
coarser than in the molecular dynamics model. In these 
coupled models, the continuum subdomain serves primarily 
as a boundary model that provides the low frequency 
impedance and a sink for the energy associated with 
outgoing waves of the molecular dynamics model. Such 
models are often called multiscale because the spectra (and 
the resolution) of the continuum model have much smaller 
cutoff frequencies than the molecular dynamics model. 

Abraham et al. [1], in a pioneering work, developed a 
methodology that couples a tight-binding quantum 
mechanics approximation with molecular dynamics and in 
turn with a finite element continuum model.  The molecular 
dynamics model was coupled with the continuum model in 
a “handshake” domain in which the two Hamiltonians were 
averaged. To reduce spurious reflections into the molecular 
dynamics domain, damping was used in the handshake 
region, although the damping was not based on any 
rigorous theory.  In most cases, it appears that the finite 
element continuum model had to be nearly of the scale of 
interatomic distances at the atomistic/continuum interface 
to perform well. 

A coupling method called the bridging domain method 
[3] is introduced in this paper. In this method, the molecular 
model and continuum model overlap at their junctions in a 
bridging domain. This method can avoid spurious wave 
reflection without any additional filtering or damping. In 
effect, the method projects the fine scale solution onto the 
coarse scale solution in the bridging domain at each time 
step. Thus it filters the high frequency components at the 
interface. Furthermore, since the method is not based on 
linearization, it was surmised that it would apply to 
nonlinear problems. Based on the test problems we have 
studied so far, this appears to be the case. 

 
2 BRIDGING DOMAIN MULTISCALE 

METHOD  
 
In an isolated system of atoms or molecules, the total 

energy, the sum of the kinetic and potential energies of the 
molecules, is constant in time and identified as the 
Hamiltonian MH , which is given by   
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where Im  is the mass of atom I , Ix  is the position of 
atom I  and III dXx +=  ( IX  is the original position of 

atom I  and Id  is the displacement of atom I ); M
Ip  is the 

momentum and defined by IIII
M
I mm dxp == . ( )xMW  is 

the potential function which is the sum of the energies due 
to any force fields, such as pair-wise interaction of the 
atoms, three-body potentials or others. The total potential is 
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The well known Hamiltonian canonical equations of 
motion are    
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Eq. (3) can be combined to yield  
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where IMI W df ∂∂= /intint . 
In the continuum domain, the Hamiltonian is given by 
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Note that we use the same symbol for the nodal forces 
for the continuum model once it is discretized by a finite 
element method. 

The model for the bridging domain coupling method is 
shown in Figure 1. The complete domain in the initial 
configuration is denoted by 0Ω . The domain is subdivided 
into two subdomains: the molecular subdomain denoted by 

M
0Ω , and the continuum subdomain, denoted by C

0Ω . The 

overlap of these two domains is denoted by int
0Ω  in the 

initial configuration; int
0Ω  is called the bridging domain and 

it corresponds to the overlap of the two subdomains; α
0Γ  

denotes the edges of the continuum subdomains and α
1Γ  

denotes the edges of the molecular subdomain. 
 

 
 
Figure 1. Bridging domain model for a nanotube; finite 

elements are indicated by lines that connect continuum 
nodes 

 
In the bridging domain method, the total energy is taken 

to be a linear combination of the molecular and continuum 
energies. A scaling parameter α  is introduced in the 
bridging subdomain, i.e. the overlapping subdomain. The 
parameter α  is defined as ( ) 0ll X=α  where ( )Xl  is the 

orthogonal projection of X  onto α
0Γ  and 0l  is the length of 

this orthogonal projection to α
1Γ . The Hamiltonian for the 

complete domain is taken to be a linear combination of the 
molecular and continuum Hamiltonians 
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The two models are constrained on the overlapping 
subdomain int

0Ω  by 
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i.e. the atomic displacements are required to conform to the 
continuum displacements at the positions of the atoms. The 
constraints are applied to all components of the 
displacements. In the Lagrange multiplier method [2], the 
total Hamiltonian is written as: 
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where { }iII λ=λ  is a vector of Lagrange multipliers whose 
components correspond to the components of the 
displacement of atom I . Note that the Lagrange multipliers 
are assigned to the discrete positions of atoms.  

The equations of motion for the Lagrange multiplier 
method are 

( )
I

LC
II

H
u

pX
∂
∂

−=α , ( ) C
C
I

L
II in

H
0Ω

∂

∂
=

p
uXα   (10) 

( )( )
I

LM
II

H
d

pX
∂
∂

−=− α1 ,

( )( ) M
M
I

L
II in

H
01 Ω

∂

∂
=−

p
dXα  (11) 

These can be combined to yield 

L
I

int
I

ext
III

LC
I

intC
I

extC
III

m

M

fffd

fffu

−−=

−−=
M

C

in

in

0

0

Ω

Ω
 (12) 

where ( ) ( )( ) IIIIII mmMM XX αα −== 1  
The internal forces are 
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The forces LC
If  and L

If  are due to the constraints 
enforced by the Lagrange multipliers and they are: 
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3 EXPLICIT ALGORITHM 
 
The Verlet algorithm is used here for time-integration of 

above equations of motion. the accelerations are obtained 
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from Eq. (12) without considering the forces due to the 
constraints, so 

[ ]

[ ] Mint
nI

ext
nI

I
nI

CintC
nI

extC
nI

I
nI

in
m

in
M

0)1()1()1(

0)1()1()1(

1

1

Ω−=

Ω−=

+++

+++

ffd

ffu
 (15) 

We then obtain the trial velocities: 
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The velocities at time step 1+n  can be alternatively 
expressed as: 
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The above velocities must satisfy the constraints (their 
time derivatives). Therefore, the unknown Lagrange 
multipliers can be obtained by solving the following 
equations: 
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JJII N dug −=∑ . To reduce the computational cost, the 

matrix A  consisting of submatrices ILA  is diagonalized as 
a diagonal matrix. Once the lagrange multipliers is 
calculated, they are substituted into Eqs. (17) and (18) to 
update the velocities of nodes/atoms in the bridging 
domain. 

 
4 VERIFICATION OF MULTISCALE 

METHOD 
 
We consider an Aluminum (Al) crystalline bar with the 

following dimensions: the length of 5.6 nm, the width of 
1.6 nm, and the thickness of 1.6 nm. There are 2025 atoms 
in this bar. Figure 2 illustrates the molecular and bridging 
domain multiscale models of this Al crystalline bar. In the 
multiscale model, there are 1377 atoms and 55 finite 
elements. The calculated stress-strain evolution at the room 
temperature is illustrated in Figure 3 when the bar is under 
uniaxial tension or compression. The stress-strain relation is 
almost linear and the calculated Young’s modulus is around 
74 GPa.  It can be seen that the multiscale simulation gives 
the same results as molecular dynamics. 

 

 
Figure 2. Numerical models of an Al crystalline bar 

 

 
 

Figure 3: Comparison of stress-strain evolutions at the 
room temperature 

 
5 MULTISCALE MODELING AND 
SIMULATION OF NANOCOMPOSITES 

 
We employ the bridging domain coupling method to 

study the failure behavior of fracture mode I for nanotube-
based aluminum composites, shown in Figure 4. Figure 5 
illustrates that when even 2% pristine nanotubes are 
embedded into the aluminum matrix, the strength of 
nanocomposites can be improved by two times.  
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Figure 4: Multiscale model of nanocomposites. 
 
 

 
 

Figure 5. The effect of the volume of embedded 
nanotubes on strength. 
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