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ABSTRACT 
The process of metabolic network is very complex, and 
consequently, difficult to understand and to teach; 
furthermore, it is impossible to predict and analyze it when 
unpredictable changes are made.  Because of the complexity 
of metabolic networks  and their regulation, formal modeling 
is a useful method to  improve the understanding of these 
systems.  To achieve our goal we’ve used probabilistic 
modeling methods to model, analyze, and simulate the 
process of carbohydrate metabolism in a very compact 
notation.  In particular our research is directed to the 
development of new probabilistic model of complex 
biological process such as carbohydrate metabolism.  In this 
paper we use Hidden Markov Models (HMMs) and 
conditional statistics to model and simulate the process of 
carbohydrate metabolism.   
 

1INTRODUCTION 
The continuing growth of amount of biological data acquired, 
the development of genome-wide measurement technologies, 
and the shift from the study of individual process to a systems 
view all contribute to the need to develop computational 
techniques for learning models from data. At the same time, 
continuous increase in computer power enables the 
simulation of complex biological and molecular process, 
composed of hundreds of transitions (reactions) (Molinero et 
al, 2005).   The aim of this paper is to provide a broad look at 
state of the art techniques used in the probabilistic modeling 
methods involving biological structures and systems, and to 
bring together method developers and experimentalists 
working towards the same end.  Carbohydrates are principal 
components of many natural products, and form structures 
ranging from monosaccharides (24 atoms, molecular weight 
180) to complex polysaccharides composed of thousands of 
these units. In many relevant cases –as glycogen, cellulose, 
and their hydrolysis products - the polymers are composed of 
only one subunit (monosaccharide) type.  The complexity of 
the natural product is due to the length, connectivity and 
branching of these chains. 
Biological and molecular processes are complex, dynamic, 
and invisible.  These processes can be investigated and 
studied from a very detailed perspective to a very high, 
abstract perspective.  The aforementioned characteristics 
make these processes difficult to explain, teach, illustrate, and 
understand.  Furthermore, any laboratory experiments of 
biological processes or reactions are time-consuming studies. 
The results of these experiments may take days, or even 
weeks before the dynamic behavior of the reaction of process 
can be observed.  Even then, many biological experiments 

fail to get the desired or expected results.  Consequently 
traditional lab experiments make them not only time 
consuming, but costly as well.  Creating a biological 
simulation or model that promotes the development of 
hypotheses on interactions that occur with limited knowledge 
of dynamic inputs can lead to a better understanding of the 
behaviors of that system (Collins 2003, Ideker 2001, Palsson 
2000, Segrè 2002)   The importance of developing biological 
models has value in the field of healthcare.  Furthermore the 
national Institute of Health released a statement indicating 
“the continued innovation and development in model systems 
is important to progress in improving the health of the 
nation.” (NIH Online Statement, 1989) 
 

HIDEN MARKOV MODEL 
A Hidden Markov Model (HMM) is a statistical model where 
the system being modeled is assumed to be a process with 
unknown parameters, and the object is to determine the 
hidden parameters from the observable parameters [Figure 1] 
The extracted model parameters can then be used to perform 
further analysis of the subject matter.  In the second half of 
the 1980s, HMMs began to be applied to the analysis of 
biological processes .  Since then, they have become a vital 
and indispensable tool in the field of bioinformatics 
(Rabiner,1989).   HMMs have predominantly been used to 
model processes  in which there are naturally occurring 
sequences, such as DNA sequencing, gene location 
prediction, or protein structure prediction.  HMMs operate 
with remarkable reliability and precision, with proven 
accuracies of over 90% (Krogh, 1994).   HMMs are also 
widely used in speech recognition, body motion recognition, 
and optical character recognition. 
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Figure 1: Sample Hidden Markov Model  
x - hidden states | y - observable outputs | a - transition 

probabilities | b - output probabilities 
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CARBOHYDRATE METABOLISM 
We will create an HMM that will help us simulate the 
metabolic pathways that the human body uses throughout the 
day.  Humans take in many types of compounds, such as 
carbohydrates, lipids, and proteins.  These compounds are 
broken down and all converge into one Common Catabolic 
Pathway.  The most readily metabolized compound in the 
body is Glucose, a 6-carbon monosaccharide.  The first step 
involved in utilizing glucose for energy is known as 
glycolysis . Glycolysis , via multiple enzymatic reactions, 
converts glucose into pyruvate.  Depending on various 
conditions, the pyruvate can either be converted to Acetyl 
Co-Enzyme A (CoA), or Lactic Acid.  Under normal 
conditions, CoA is the dominant product, and is used in 
aerobic respiration, which occurs in the presence of oxygen.  
In the absence of oxygen, pyruvate is catabolized via 
anaerobic respiration into Lactic Acid, which yields 18-19 
times less energy than aerobic respiration.  During increased 
levels of physical exertion, such as vigorous exercise, the 
demand for energy exceeds the supply of oxygen.  The body 
reverts to anaerobic respiration during these periods of 
increased oxygen demand.  But it is not a requisite for our 
muscles to be oxygen deprived in order to produce lactic 
acid.  Lactic acid can actually be created and transported to 
muscle groups undergoing high rates of metabolism from 
muscle groups undergoing little to no metabolism (Farham, 
2000) 
 

MODELING OF CARBOHYDRATE 
METABOLISM 

Many significant applied and basic research questions in 
science today are interdisciplinary in nature, involving 
physical and/or biological sciences, mathematics, and 
computer science in an area called computational science. 
Frequently, a research project has a team of professionals 
from a variety of fields. The ability to understand various 
perspectives and perform interdisciplinary work can aid 
communication and speed the progress of a project. 
Moreover, the use of computers has become an essential 
ingredient to many of such projects 
In the post-genome era, biopathway information processing is 
one of the most important research topics in Bioinformatics. 
Powerful analytical technologies are becoming ubiquitous in 
biology, which are characterized by high-throughput parallel 
measurement of large numbers of molecular species. Further 
more the increasing knowledge in biology and improved 
measurement methods allow to build detailed models of the 
cellular interior and molecular processes..  
Biochemical network models can be used to predict, explain 
and hypothesize about phenomena. When made quantitative 
and implemented in computer software, models can be used 
to carry out large numbers of simulations that are designed to 
answer ‘what-if’ questions. There are currently several 
software applications that make the process of modeling 
biochemical networks and use them to simulate data for the 
purpose of assessing the efficiency of analysis algorithms 

(Mendes, 1997)  Biochemical modeling and simulation are 
becoming an important method to study data analysis 
algorithms in systems biology (Fiehn , 2003). 
In this paper we use Hidden Markov Modeling techniques 
and probabilistic statistics to models and simulate, and study 
the biochemical network known as Carbohydrate. 
Modeling of metabolism serves various useful purposes. 
Firstly, it attempts to improve our understanding of 
homeostatic regulation by evaluating essential parts or 
aspects of the metabolic system.  To construct a detailed 
metabolic model of known pathways, the kinetics of the 
involved enzymes must be calculated, or data may be 
recovered from the literature. The kinetic data together with 
data on the effects of co-factors, pH, and so on are used to 
parameterize the model. This straightforward type of 
modeling means translating biochemistry into mathematics 
(Giersch, 2000).  In the absence of this data, or when 
developing a model on which other models are to be based, it 
is safe to assume values, as long as the values  reflect typical 
biological or physiological response.   
In this model, the hidden state is going to be the subject’s 
level of physical exertion.  The observable output will be 
Lactic Acid or Acetyl CoA.   By looking at the outputs, we 
will be able to determine which metabolic pathway the body 
is using at a specific time.  With this information, we can 
infer with some accuracy as to the level of exercise the 
subject is undergoing. 
For the model, let us assume that throughout the course of the 
day, a human is in one of four levels , or states of physical 
exertion. The first is rest, which includes sleeping, sitting, or 
standing.  The second is light activity, which includes paced 
walking, showering, or eating.  The third is moderate physical 
activity, which includes cleaning the house, gardening, or 
walking up steps. And the last is vigorous physical activity or 
exercise, examples of which include jogging, running, or 
weight training.  As explained earlier, each of these states 
place a different oxygen demand on the body, and 
subsequently, the end products produced by glycolysis  vary 
from state to state.  We will assign assumed values to each of 
these states based solely on the notion that the greater the 
level of exertion, the greater the amount of lactic acid 
produced. 
An HMM is defined by an alphabet of emitted symbols ? ,  a  
set of hidden states Q, a matrix state of transition 
probabilities A, and a matrix of emission probabilities E, 
where 

? ? is an alphabet of symbols . 
? Q is a set of states, each of which will emit symbols 

from the alphabet ? . 
? A = (akl) is a |Q| x |Q| matrix describing the probability 

of changing to state l after the HMM is in state k ; and 
? E  =  (ek(b)) is a |Q| x |? | matrix describing the 

probability of emitting the symbol b during a step in 
which the HMM is in state k . 

Metabolic Pathway products corresponds to the following 
HMM m 
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? ? = {0,1}, corresponding to Acetyl CoA (0), Lactic 
Acid(1),  

? Q = {R,L,M,E}, corresponding to rest (R), light 
activity(L), moderate activity (M), or exercise(E)  

? aRR = aLL = aMM = aEE =0.7, aRL = aRM = aRE = aLR = aLM 
= aLE = aMR = aML = aME = aER = aEL = aEM =0.1 

? eR(0) = ¾, eR(1) = ¼ , eL(0) = 5/8, eL(1) = 3/8, eM(0) = 
1/2 , eM(1) =  

? 1/2 , eE(0) = 1/4, eE(1) = 3/4  
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Figure 2: HMM showing State Transition Probabilities 

 
A path p = p1… pn in the HMM m is a sequence of states.  
Our subject is going to follow the routine of a typical 
weekend day.  As he carries out various activities, his state 
changes .  For the sake of uniformity, we will assume that the 
subject stays in a given state for at least one hour and that 
state transitions can only occur only on the hour.  Following 
is a list of the activities and the state assigned to it  (Table 1). 
 

Table 1: Twenty four hour activity 
 

Hour Activity State     Hour Activity State     

0000 Sleep R 1200 Garden M
0100 Sleep R 1300 Wash Car M
0200 Sleep R 1400 Lunch L
0300 Sleep R 1500 Gym E
0400 Sleep R 1600 Lift Weights E
0500 Sleep R 1700 Dinner L
0600 Sleep R 1800 Home Repairs M
0700 Sleep R 1900 Watch TV L
0800 Shower/Eat L 2000 Clean House M
0900 Walk Dog L 2100 Read L
1000 Morn. Jog M 2200 Shower L
1100 Read Paper L 2300 Sleep R  

 
The corresponding path p for this day is  

p = RRRRRRRRLLMLMMLEELMLMLLR.   
If the resulting metabolic products are: 
000000000010010110100000, then the following shows the 
matching of x  to p and the probability of x1 being generated 
by p1 during a given hour. 
P(xi |pi) denotes the probability that symbol x1 was emitted 
from state p1.  P(pi ? pi+1) denotes the probability of the 
transition from state pi to pi+1  (fig. 3 and 4).   

X 0 0 0 0 0 0 0 0 0 0 1 0

? = R R R R R R R R L L M L

P(xi| p i)                                      3/4 3/4 3/4 3/4 3/4 3/4 3/4 3/4 5/8 5/8 1/2 5/8 
 

Figure 3: Hours 12a -11a 
 

X 0 0 0 0 0 0 0 0 0 0 1 0

? = M M L E E L M L M L L R

P(xi| p i)                                      1/2 5/8 3/4 3/4 5/8 5/8 1/2 5/8 1/2 5/8 5/8 3/4
 

Figure 4: Hours 12p-11p 
 

The path p = RRRRRRRRLLMLMMLEELMLMLLR 
includes multiple state transitions.  The subject occasionally 
remains in the same state as the previous hour.  The state 
changes are not random; they are based on the activities that 
the subject carries out.  Let us assume however, that the 
subject’s activities were based on the probabilities of state 
changes  that we previously assigned.  For example, the 
probability of the switches p8?  p9 and p19?  p20 is 1/10.  The 
probability of the switches p3?  p4 and p16?  p17 is 7/10.  The 
probabilities of the state changes throughout the course of the 
day are shown below (fig. 5 and 6). 
 

X 0 0 0 0 0 0 0 0 0 0 1 0

? R R R R R R R R L L M L

=

P(xi| p i)                                      3/4 3/4 3/4 3/4 3/4 3/4 3/4 3/4 5/8 5/8 1/2 5/8

P(p i  ? p i+1) 7/10 7/10 7/10 7/10 7/10 7/10 7/10 1/10 7/10 1/10 1/10 1/10

 
Figure 5: Hours 12a -11a 

 

X 0 0 0 0 0 0 0 0 0 0 1 0

? M M L E E L M L M L L R

=
P(xi|  p i)                                      1/2 5/8 3/4 3/4 5/8 5/8 1/2 5/8 1/2 5/8 5/8 3/4

P(p i ? p i+1) 7/10 1/10 1/10 7/10 1/10 1/10 1/10 1/10 1/10 7/10 1/10 1/10

 
Figure 6: Hours 12p-11p 
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The probability of generating x through path p is 5.32 x 10-19 
and is computed as 

? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?3 7 3 7 3 7 3 7 3 7 3 7 3 7 3 7 5 7 5 1 1 7 5 1

4 10 4 10 4 10 4 10 4 10 4 10 4 10 4 10 8 10 8 10 2 10 8 10

? ? ? ? ? ? ? ? ? ? ? ?

 

? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?1 7 5 1 3 1 3 7 5 1 5 1 1 1 5 1 1 1 5 1 5 7 3 1

2 10 8 10 4 10 4 10 8 10 8 10 2 10 8 10 2 10 8 10 8 10 4 10

? ? ? ? ? ? ? ? ? ? ? ?

 
Figure 7: Probability of generating x through path pie 

 
CONCLUSION 

This paper defines the process of carbohydrate metabolism as 
a stochastic finite state automaton, using hidden Marko 
modeling.  In the process of carbohydrate metabolism there 
are finite set of possible states and each of those states are 
associated with a specific probability distribution.  Two areas 
could benefit from this type of research.  First of all this 
approach is expected to be particularly important in 
comparing competing data analysis methods that require 
considerably different experimental setups. In this  case, 
modeling may be the only way to be able to study their 
performance in a truly comparative way.  Secondly the model 
could be used as a teaching tool by educational institutions.  
Models are powerful tools for understanding complex 
biological systems.  Furthermore it helps students to be 
engaged in active learning.  This paper as an initial step of 
ongoing research shows how probabilistic statistics and 
HMM can be used to model the process of carbohydrate 
metabolism. 
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