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ABSTRACT

Precise real-time observation of retinal features,
ophthalmic biometric identification and prescription of
aberration-specific contact lenses demand detection
and eventual correction of ophthalmic aberrations at
rates higher than those of micro-fluctuations and
involuntary movements inherent to the eye. Detection
and correction can be accomplished in a feedback-loop
adaptive optical system comprising a wavefront sensor
and a deformable mirror. The loop must operate at a
frequency higher than 300 Hz, the maximum laser
power entering the eye should observe safety
regulations and the accuracy of aberration detection
should be better than λ/4.

This article presents recent advances in
application-specific sensor design, in neural-network
control algorithms and in randomized wavefront
sampling planes. The results also indicate the
potential of standard silicon-technology components to
the medical scenario.
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1 INTRODUCTION

Ophthalmic aberrations beyond defocus and astig-
matism can be the culprit of poor retinal observation
and unsharp vision. Optimal vision, both inwards and
outwards, can only be accomplished if all aberrations
in the eye optical path are corrected. This path com-
prises the cornea, aqueous humor, crystalline lens, vit-
reous humor and the retina. The appropriate distortion
measurement and correction methods should be compat-
ible with the dynamics of the eye. Even when the eye
is locked at a fixed target, phenomena such as micro-
fluctuation and drift are present as a consequence of the
vestibulo-ocular reflex (VOR), that stabilizes an image
on the retina, and the saccadic eye motion that maps a
scene and maintains visual stimuli. These superimposed
fluctuations can reach a 90 Hz frequency with image de-
centralization of up to 25 µm.

Suitable adaptive optical systems, to account for dy-
namic changes in the eye, employ a Hartmann-Shack
wavefront sensor and an adaptive membrane mirror, as

reported in [1]. A probing laser beam is reflected by the
retina and traverses the ocular path. The outcoming
wavefront, associated with the reflected beam, becomes
imprinted with the eye distortions. The sensor output
signals are related to the wavefront profile and represent
the input to a control algorithm that drives the adap-
tive corrector (electrostatically actuated micromachined
deformable mirror) [2]. The feedback loop must operate
at a frequency higher than 300 Hz to allow for several
iterations required for optimal convergence. Also, the
maximum laser power entering the eye should be ob-
served according to safety regulations, and the accuracy
of aberration detection should be better than λ/4 [3].

Our approach addresses several system elements:
mirror control method, sensor design and
sampling-plane architecture. We propose: a simple
Adaline neural network for the control algorithm in
contrast to the traditional least-square matricial
method; an application-specific CMOS image sensor as
opposed to an off-the-shelf camera; and controlled
randomization of the wavefront sensing mask instead
of a regular array of sub-apertures. The pursuit of a
fast and accurate adaptive optical system by means of
the aforementioned elements will be described in the
following sections.

2 ADALINE NEURAL NETWORK

We focused on the very simple Adaline neural net-
works [4] for tests in both diagnosis of wavefront aberra-
tions and deformable-mirror (DM) control in an Adap-
tive Optical (AO) system.

3 Wavefront reconstruction

In the Hartmann wavefront sensing method the prob-
ing laser beam impinges on an opaque mask with a num-
ber of sub-apertures. The beam is sampled as M sub-
beams, which propagate a small distance (usually from
1 to 10 cm) towards an observation screen. Assuming
Fresnel diffraction does not impart too much power di-
vergence from mask to screen and that the wavefront is
flat, then, the resulting spots will unmistakenly repro-
duce on the screen the sub-aperture grid present on the
mask. Distortions on the wavefront result in the depar-
ture of the light spots from the initial grid. Recording

413NSTI-Nanotech 2006, www.nsti.org, ISBN 0-9767985-8-1 Vol. 3, 2006



the x and y displacements of the spots from the (i, j)
grid points, one can geometrically calculate the respec-
tive (i, j) wavefront slopes and therefore reconstruct the
initial wavefront.

A test wavefront ΞW can be represented on a na-
tive basis, for instance Zernike polynomials Zi [5], as
ΞW =

∑∞
i=0 CiZi(ρ, θ). The sensor signals, associated

with the test wavefront, yield a reconstructed wavefront
ΞR that can be decomposed on a reconstruction basis
with N functions and their respective λi coefficients as
ΞR =

∑N−1
i=0 λiZi(ρ, θ). The reconstruction order N is

dictated mostly by the sensor geometry and noise.
Wavefront aberrations in the human eye have been

observed to be substantial only to the first 14th Zernike
orders, where the first two polynomials represent strictly
non-aberrational terms such as tip and tilt, which can be
related to the eye axis. This indicates that a weighted
sum truncated to 14 terms might suffice for the recon-
struction.

3.1 Wavefront diagnosis

For the diagnosis of test wavefronts the algorithm
receives as inputs the reconstruction basis, consisting of
N = 14 Zernike functions. It outputs a weighted sum
ΞR that is compared at each grid coordinate (ρ and θ)
to the test wavefront ΞW . Then, the mean-square error
(mse) of the resulting residual matrix ΞW − ΞR serves
as feedback to the neural net. Each internal iteration
(epoch) adjusts the 14 nodal weights (λi) towards mse
minimization. The stop parameters are mse≤ 1e − 6
and epochsmax = 1000. Figure 1 illustrates the network
topology. The ultimate weights indicate the best coeffi-
cients (λi) to the respective Zernike terms in order to re-
construct the test wavefront. Data permutation in this
algorithm prevents that it stacks at pseudo-minimum
error levels.
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Figure 1: Adaline neural network topology.

We executed the algorithm for six different test wave-
fronts, represented as a weighted sum to the kth or-
der. For k ≤ N , the test wavefront can be completely

described by the set of N = 14 reconstruction func-
tions. For k > N , higher spatial frequency terms must
be somehow described by a restricted range of Zernike
terms, resulting in an increase in aliasing and in a worse
minimum error as more high-order terms are added.

The algorithm can be easily extended to include dy-
namic adaptability, where the number of Zernike recon-
struction functions N can be changed between epochs
depending on the mse convergence rate.

3.2 Adaptive Optical system

The Adaptive Optical (AO) system was set up as
shown in Figure 2. The laser beam (12-mm diameter,
He-Ne, λ = 632.8nm) traverses the aberration plane
(AB), impinges on the mirror and is reflected towards a
beam-splitter that divides the beam between the custom
CMOS wavefront sensor and a conventional CCD-based
wavefront sensor. This preliminary system is intended
to test the performance of components and control algo-
rithm. It is not yet designed to incorporate an eye, its
target and an observational site. However, the plane AB
in the presented system can accommodate aberrations
that, with no lack of generality, could be present in an
eye adapted to an optical subsystem [6].
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Figure 2: Adaptive Optical system.

The mirror is a 15-mm micromachined membrane de-
formable mirror (MMDM), Flexible Optical B.V., with
37 channels and electrostatic actuation. The membrane
is kept at a bias position by maintaining an offset voltage
of ∼ 160V at all actuators with respect to the grounded
membrane. The channel voltage can reach up to 250 V
and the maximum mirror stroke is 8 µm.

The custom wavefront sensor consists of an opaque
mask (Hartmann mask) with sixteen 450 µm circular
sub-apertures laid on a regular square array with
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1000 µm pitch. The mask is positioned at 8.3cm away
from a CMOS chip with a corresponding array of
quad-cells (QC’s) 600 µm wide [7]. Each pixel in a QC
is passive and based on a double-junction structure
(p+/n-well/p-epi). The custom chip outperforms an
off-the-shelf camera in operational speed because it
delivers signals directly proportional do the x and y
displacements, circumventing the need for image
processing.

The quad-cell response is non-linear and can be
closely fitted with a sigmoidal curve. Although it is
not detrimental to wavefront accuracy, upon
calibration, linearization of this curve could speed up
the numerical routines that relate the sensed signal to
true displacements.

3.3 Deformable-mirror control

A mirror mode, or influence function, is the shape the
membrane assumes when an incremental voltage step
is applied to a single mirror electrode (actuator). For
the mirror we used, there are thus 37 modes, each im-
parting a characteristic set of spot displacements on the
CMOS wavefront sensor. We can consider the wave-
front reflected from a biased membrane to be the ref-
erence wavefront, itself responsible for a set of x and y
displacements marking reference positions.

The Adaline neural network used for Zernike terms
has been modified to attend to this system. The topol-
ogy remains basically the same, but the input recon-
struction functions have been substituted with the sen-
sor responses to the 37 mirror modes Mi. Each mode
corresponds to a vector with 32 elements representing
16 x and y displacements. The algorithm delivers an
output vector D, as a weighted sum of the basis vec-
tors, in an attempt to minimize the error to a sample
vector Dd associated with the aberrated wavefront ΞW .
The weights wi (i=0,...,36) are related to the voltages
to be applied to the mirror actuators.

3.4 Algorithm performance

We introduced centered defocus with an amplitude
of 36 µm (> 55 λ) as the aberration. This value is
far beyond the working stroke of the mirror membrane
and is only intended to evaluate the convergence ability
of the algorithm. This aberration exploits the spatial
dynamic range of the quad-cells because it forces the
outer spots to the edge of their respective QCs. The
network parameter mse indicates how close the solution
is to the reference grid as a function of the number of
epochs, and the displacement error associated with it is
kept under 1% for all epochs.

Next we introduced a milder aberration with ampli-
tude λ/2 (Figure 3) to check the algorithm convergence.

When the neural algorithm starts with unity weights
it takes a single epoch to reach an acceptable solution,
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Figure 3: Profile of the mild aberration introduced,
which contains mostly coma, astigmatism, trefoil and
spherical aberration.

i.e. a wavefront match better than λ/50. After ∼ 80s
and 1.5M epochs the mse reaches 0.00017 (wavefront
match better than λ/5000).

In practice, dynamic distortions of a given wavefront
occur smoothly and the network weights oscillate within
a somewhat limited range. By modifying the wave-
front only slightly (∼ λ/16 rms) we registered the al-
gorithm convergence in a single epoch to mse=0.0018
(accuracy ∼ λ/1000), in 200 µs.

As the sensor has been read at 1kHz (1ms) and all
software routines take less than 400 µs the system has
potential to be operated at rates higher than 600 Hz.

A single iteration of the AO system restores the
wavefront to approximately λ/5 rms deviation from the
reference wavefront, which complies to the wavefront
accuracy of λ/4 usually demanded for ordinary eye
tests, where dominant low-order aberrations might be
as high as 5λ [9]. The rate of accuracy improvement
with increasing iterations is yet to be investigated.

To improve the accuracy we need to employ a more
accurate reference wavefront [10] and a larger number
of quad-cells, which might lower the system operational
frequency. However, even if it operates at 300 Hz it still
offers time for 3 iterations whereas maintaining compat-
ibility with the micro-motion frequency of the eye.

4 NEW PIXEL STRUCTURE

The CMOS sensor previously described renders a
poor wavefront accuracy (< λ/3) for the low light levels
demanded by ophthalmological applications. According
to the American National Standards Institute (ANSI, Z-
136.1 standard) [9], the maximum permissible exposure
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(MPE) for 25 µs, at λ = 0.63 µm, is 1.78mW. Consider-
ing that only about 1% of the incident light is reflected
by the retina, a very faint beam will reach the wavefront
sensor, where each resulting light spot takes up less than
about 0.5µW.

To comply to these margins, the photosensitive
structures in each quad-cell must have an improved
signal-to-noise ratio (SNR), which can be achieved
through noise reduction and enhanced quantum
efficiency (QE). These figures directly impact the
positional signal-to-noise ratio (SNRp) related to the
quad-cell response, which consequently affects the
wavefront accuracy.

Therefore, we devised a photodiode in standard 1.6-
µm nwell CMOS technology, where some design issues
were attempted in order to improve the above figures.
The photodiode perimeter is that of a quarter-circle,
200µm radius. The main junction is n-well/p-epilayer,
2.9µm deep to promote maximum absorption at λ =
0.63 µm. The n-well is segmented to improve the junc-
tion area along with the volume of the depletion region.
The region closest to the right-angle corner features and
extra-shallower junction (p+/n-well) to improve sensi-
tivity at the central part and linearize the response of
the envisioned quad-cell.

The measured NEP (noise-equivalent power,
SNR = 1) is 0.04µW. In the optical power range from
0.1µW and 0.5µW the SNR ranges from 5.1dB to
20.5dB, the photo-generated current Ip and the
respective rms noise range from 30nA (17.8nA) to
190nA (18.3nA). The overall quantum efficiency (QE)
was measured to be 71.3%. The total photodiode
capacitance is 4.47pF (10 times lower than that of the
previously used photodiode).

The photodiode was further equipped with 4 NMOS
FETs in an active-pixel configuration, as shown in Fig-
ure 4). This architecture decouples the pixel capacitance
from the signal-line capacitance and guarantees reduced
reset noise and fixed-pattern noise. The reduced equiv-
alent capacitance also reduces the signal delay time [11].

Vdd

reset

Tx

Ts

Vout

Figure 4: Active pixel with 4 FET transistors.

The signal-to-noise ratio of the active pixel is far
better than that of the photodiode alone, ranging from

35dB to almost 50dB in the range from from 0.1µW and
0.5µW. The measured active-QC response to a 0.2µW
spot displacement in the x direction is shown in Figure 5.
It shows the linearization of the passive-QC curve. The
active QC achieved a position resolution as low as 2µm
(0.2µW spot), indicating a wavefront accuracy of ap-
proximately λ/50. These results are undoubtedly com-
patible with the low-light-level ophthalmic standards.
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Figure 5: Response of a quad-cell with four active pixels
to a 0.2µW spot displacement in one direction.

5 RANDOMIZATION OF THE
HARTMANN MASK

The performance of Hartmann masks with random
position of subapertures (s/a) was recently investigated
in [12]. It was shown that for Kolmogorov atmospheric
turbulence randomization of s/a centers positions im-
proves the performance of HS wavefront sensor in terms
of speed and accuracy. Despite the absence of compre-
hensive statistics on human-eye aberrations, some ad-
vantages of randomized arrays can be demonstrated for
use in ophthalmology.

5.1 Mathematical model of HS
wavefront reconstruction

Mathematically, the modal wavefront reconstruction
with HS test can be represented as a result of some lin-
ear operator H applied to the impinging wavefront f ,
i.e. f̃ = Hf , where f̃ is the reconstructed wavefront.
The operator H is closely related to the geometry of
the Hartmann mask and the algorithm used for wave-
front sensing and reconstruction (we do not consider
here gradient-measurement errors , e.g. due to non-
uniform illumination or camera spatial discretization).
Suppose decomposition modes fj , j = 1 . . . , N and “na-
tive” basis of the incoming wavefront gi, i = 1, . . . ,∞
are used, that is

f̃ =
N∑

j=1

λjfj , f =
∞∑

i=1

cigi + c0.
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Then the operator H is fully characterized by its ma-
trix H, an N ×∞ matrix which j-th column is given by
the coefficients of reconstruction of a wavefront contain-
ing only j-th basis function:

Hf = (f1, f2, . . . , fN ) ·H ·

 c1

c2

. . .

 . (1)

For an often case of the same decomposition and native
basis fj = gj , the ideal matrix H is a unity matrix for its
first N columns and zero elsewhere; a Hartmann sensor
with such a matrix reconstructs the first N aberrations
without distortion and is not sensitive to higher-order
terms:

Hideal(
∞∑

i=1

cifi + c0)

= (f1, . . . , fN ) ·

(
1 0

. . .
0 1

∣∣∣∣∣ 0...

)
·

 c1

c2

. . .


= c1f1 + c2f2 · · ·+ cNfN . (2)

For non-ideal matrices, the aliasing and cross-coupling
errors decrease the fidelity of the reconstructed wave-
front.

Equation 2 allows one to estimate the reconstruction
error (ε = f̃ − f) for any given impinging wavefront f ;
more practical is to derive statistical characteristics of
ε from those of the coefficients ci of sensed aberrations,
defined in terms of average vector 〈ci〉 and correlation
matrix

〈
cic

j
〉
.

In the absence of statistical data, no definitive state-
ment about the advantages of a particular mask geom-
etry can be done. However, some quality criteria such
as the similarity to an ideal matrix may help evaluate
the performance improvement. In the next section, rms
value of deviation of H from ideal matrix Hideal is used
as a quality factor Q:

Q = RMS(H−Hideal) =

√∑
i,j(h

j
i )2 −N

NM
, (3)

where hj
i is an element of H and number M of columns

in H used for calculation is large enough. Q represents
an average coefficient in H, magnitude of “feed-through”
of high-order modes to each of the first N modes; the
larger Q, the greater aliasing error is; for the ideal Hart-
mann operator, Q = 0.

The following example gives an illustration of the
Q-factor. Consider the first N modes as a signal conta-
minated by hypothetical “white Zernike noise”, a ran-
dom aberration with zero time average and a cross-
correlation matrix

〈
cic

j
〉

= σ2
noiseδ

j
i , where δj

i is the
Kronecker symbol. If the bandwidth of the system is

M modes, the noise total power is Mσ2
noise. According

to Equation (11) from [12] and Equation (3) from the
previous paragraph, this results in aliasing error with
total power sigma2

al = Q2NMσ2
noise. Thus SNR of re-

constructed and incoming wavefront are related as

SNRr =
1√
NQ

SNRi. (4)

5.2 Numerical results

We have considered 3 mask geometries shown in Fig-
ure 6 with a total aperture diameter of 12 mm and s/a
diameter 450µm: one regular 64-hole array and two ran-
dom arrays with 64 and 32 sub-apertures. The pitch of
the regular grid is 1 mm; the same value was used as
minimal distance between s/a centers in the random-
ized arrays to maintain the dynamical diapason.

(a) Rect64 (b) Random64 (c) Random32

Figure 6: Regular 64-hole Hartmann mask, randomized
64-hole and 32-hole masks used for calculations.

Matrices H calculated for these three geometries for
Zernike polynomials as both decomposition and native
basis, N = 14 decomposition modes, and least-squares
decomposition algorithm (see [12] for details on the com-
putational procedure). The matrix for the regular ar-
ray contains larger elements than that for the random-
ized mask with 64 s/a, but has sparser structure. The
matrix for the 64-hole randomized mask appears to be
the closest to the ideal matrix in the least-square sense.
For hypothetical white Zernike noise, sensing with mask
Random64 will decrease the signal-to-noise ratio in ≈ 2.1
times with respect to ≈ 2.9 for the regular mask; or
one can use a random mask with half the number of
s/a, which keeps the aliasing error at the same level,
whereas it speeds up the calculations in 4 times.

In practice, the spectrum of aberrations usually de-
creases with the aberration order. Thus, the main alias-
ing error for a wavefront reconstructed with the first 14
modes is expected to come from the next several aber-
rations. Here the randomized masks are superior to the
regular arrays. Figures 7(a)–(c) show a close-up view of
the matrices H; please note the uneven aliasing for the
regular array leading to larger rms error.

Random arrays allow for another performance im-
provement by using a special trick, reported here for the
first time, to our knowledge. Namely, being interested in
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(a) HRect64,14 (b) HRandom64,14 (c) HRandom32,14

(d) H20
Rect64,14 (e) H20

Random64,14 (f) H20
Random32,14

Figure 7: (a)–(c): first 30 columns of matrices of Hart-
mann operators H; (d)–(f): first 30 columns of first 14
rows of matrices of Hartmann operators H calculated
for 20 decomposition modes.

the first N terms, one is able to remove completely alias-
ing from the next n terms by calculating a reconstructed
wavefront for N +n terms and then discarding unneces-
sary coefficients. This is equivalent to considering only
first N rows of H built for N +n decomposition modes.
This technique works only for random Hartmann masks,
mainly due to the dramatic growth of aliasing error for
regular arrays [12]. For regular masks, matrices H are
uneven, with larger elements concentrating in the first
rows; discarding last rows, with smaller values, one in-
creases the average element (Q-factor). For randomized
Hartmann masks the matrices are nicely uniform, so the
average remains at the same level after discarding the
last rows. This is illustrated by the examples shown in
Figure 7(d)–(f) and by the Q-values in Table ??; the
matrices H20

mask,14 were obtained by discarding the last 6
rows from the matrices calculated for 20 decomposition
rows.

6 CONCLUSIONS

We presented the initial tests indicating the feasi-
bility of using a simple and yet robust neural network
for both the diagnosis of human-eye aberrations and
the control of a micromachined deformable mirror in
an Adaptive Optical system. The algorithm performs
adequately in terms of both speed and accuracy. It also
offers the possibility for real-time adaptability. To com-
ply to the low-light levels demanded in ophthalmology,
we proposed, designed and tested an alternative pixel
structure for use in an active quad-cell. The quad-cell
features a position resolution that yields a wavefront
accuracy as good as λ/50 for a 0.2µW spot; it operates
satisfactorily even for spots five times fainter. At last,
we studied the randomization of sub-apertures positions
on a Hartmann mask and concluded that a random mask
leads to a substantial anti-aliasing effect if proper design
and algorithm boundaries are observed.
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