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ABSTRACT 
 

The sensitivity of an isotropic un-symmetric layered 
micro-layered plate under initial tension is formulated 
analytically.  The approach which follows von Karman 
large deflection plate theory for the case of a 
un-symmetrically layered isotropic plate was developed, 
first, followed by neglecting the arising nonlinear terms to 
have a linear consideration upon the posed problem.  The 
arisen modified Bessel equation for the lateral slope can be 
solved by the use of modified Bessel functions with 
arguments defined via a modified tension parameter 
accounting for stiffness due to un-symmetry.  The 
solutions for geometrical responses are further manipulated 
to obtain an analytical expression for the mechanical 
sensitivity for a typical layered micro-sensing plate, using 
the re-occurrence relationships for integration and 
differentiation for the modified Bessel functions. 

 
The results for a slightly un-symmetric plate are 

compared to those of a singled layered case available in 
literature to validate the present approach.  The radial 
variations of the geometrical responses are found to 
correlate very well with which given by Sheplak and 
Dugundji [1], throughout the range of the employed initial 
tension.  In additions, the effects of initial tension, lateral 
load, as well as the deviation in layer moduli are 
thoroughly investigated, for typical un-symmetrically  

 
Keywords：Un-symmetric layered plate, Sensitivity, Initial 
tension, von-Karman Plate theory, Modified Bessel 
functions. 
 

1.  INTRODUCTION 
 

Initial tension often arises in a typical micro-fabrication 
process.  It has been well recognized that the magnitude of 
initial tension could be high enough to cause a serious 
degradation in structural performance such as the 
deflection-based pressure sensitivity.  For miniaturized 
devices such as poly-silicon-based pressure sensors and 
accelerometers, they are commonly fabricated in an 
un-symmetrically layered configuration and large 

deflection condition is often encountered in application.  
In this case, classical plate theory based on Kirchhoff 
assumption is no longer applicable and thus requiring a 
more precise theoretical consideration to predict the 
behavior of the micro-sensing structure.  The coupled 
effect due to pretension and un-symmetry upon the relevant 
structural responses is equally important.  In particular, it 
may be worthy of note about the associated mechanical 
sensitivity for such typical sensing devices undergoing a 
large deflection condition. 

 
The recent close-related works considering large 

deflection of sensor plates under initial tension are due to 
Voorthuyzen & Bergveld [2], Sheplak and Dugundji [1], 
and Su et al. [3].  These studies employed either analytical 
approach or numerical finite difference method 
incorporated with an iteration scheme to solve for the 
corresponding simplified linear problem and the associated 
nonlinear problem, for either an isotropic micro-plate with 
or without a center boss.  Nevertheless, the practical 
problem of mechanical sensitivity for the sensing device 
seemed to be ignored until an analytical formulation was 
presented by Saini et al. [4].  In this study, the linear 
solution for the geometrical responses of a single-layered 
sensor plate was further manipulated, providing an 
analytical formulation for scaling the mechanical sensitivity 
of the sensor.  Unfortunately, no detailed information 
regarding material properties and geometry of the plate 
were given, despite an insight of the effect of initial tension 
upon the mechanical sensitivity was indeed presented.   

 
For an un-symmetrically layered composite sensing 

device, the coupled effect due to pretension and 
un-symmetry upon the relevant structural responses can be 
very important.  In particular, it may be worthy of note 
about the associated mechanical sensitivity for such typical 
sensing devices undergoing a large deflection condition.  
To this end, the sensitivity of an isotropic un-symmetric 
layered micro-layered plate under initial tension (Figures 1) 
is formulated analytically.  The approach which follows 
von Karman large deflection plate theory for the case of a 
un-symmetrically layered isotropic plate was developed, 
first, followed by neglecting the arising nonlinear terms to 
have a linear consideration upon the posed problem.  The 
simplified equation set leads to a modified Bessel equation 
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for the lateral slope with solution expressible in terms of 
modified Bessel functions with arguments defined via a 
modified tension parameter accounting for stiffness due to 
un-symmetry.  The solutions for geometrical responses are 
developed and further manipulated to obtain an analytical 
expression for the mechanical sensitivity for a typical 
layered micro-sensing plate, using the re-occurrence 
relationships for integration and differentiation for the 
modified Bessel functions.  Some parametric study 
regarding the effect of layer un-symmetry and initial 
tension upon the geometrical and stress responses, as well 
as the mechanical sensitivity of the un-symmetric plate will 
be conducted. 

 
2. PHYSICAL PROBLEM AND SOLUTION 

An un-symmetrically layered circular plate clamped all 
around is considered.  It is subjected to a uniform 
pretension, , and a uniform lateral pressure , , as 
shown (Fig. 1 and 2).  The governing equations which 
follow the von Karman’s plate theory of large deflection. 
can be written in terms of radial slope, , and in-plane 

force resultants, and , as well as the moment 
resultants, 
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where Qr is the transverse shear force resultant.  In 
additions, the force resultants, Ns, and moment resultants, 
Ms, are defined through the laminate constitutive laws for a 
layered isotropic plate.  By using the strain-displacement 
relations, integrated form of the second equilibrium 
equation, and the laminate constitutive laws, the second and 
the third equations can be rewritten in terms of w/, 

and .  Focusing the case of unique Poisson’s ratio 
for the layers of the plate, and expressing  in terms 
of , via the use of equation (1), these 3 nonlinear 
equations can further be recast and merged into 2 equations 
for the lateral slope, θ=w
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where , 1, ;
T
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a=BrCβ–Dr, B_=Br–Bt; w/=dw/dr, ttrr BABAC 11 −− +=β , 
11 −− −= rta AAA ,  In additions, As, Bs, and Ds are the 

elements of the extensional, the coupling, and the bending 
stiffness matrix of the un-symmetrically-layered isotropic 
plate; and [ ] 1

11
1 −− = AA r , , respectively. 

Employing similar non-dimensional scheme as which used 
by Sheplak and Dungundji [1], i. e., 
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equations (14) and (15) can further be manipulated to read, 
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where Θ= hγ , ξγγ dd=& , …etc; and Pn = qa4/2.  U, 

W, θ , and ψ  are the non-dimensional radial 
displacement, lateral deflection, lateral slope and curvature 
respectively; and ξ ,  P and  are the non-dimensional 
radial coordinate, lateral pressure, and tension parameter 
individually.  Among them, the dimensionless pressure (P) 
and pretension parameter (k) are defined such that,  

k
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These equations are subject to the following boundary 
conditions of the problem, i. e., (i) For ξ = 0 : θ=0, Sr = 
Sθ; and (ii) For ξ = 1 : θ=0, U =0. 
 

For the case of small deflection as tension parameter, k, 
varies from 0 to infinity, all the nonlinear terms in 
equations (16) and (17) can be neglected, yielding a 
presumed constant for the non-dimensional radial force 
resultant, Sr; and a linear differential equation for 

Θ= hγ , 
( ) )6(1 3222 ξγξγξγξ TD Pk −=⋅+−+ &&&  

where TD Dkk ′= 22 , ( )βCBDDD rrrT −=′ , and anT TPP = . 
The solution for γ includes a very straight forward 
particular solution and a homogeneous part expressible in 
terms of Modified Bessel functions of the first kind and the 
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second kind, ( )η1I  and ( )η1K  ( )ξη Dk=  [5], i. e., . 
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The lateral deflection and radial curvature are obtained by 
integrating and differentiating (20), respectively, i. e., 
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By deriving the strain components at any specific depth in 
the layered plate, the corresponding mechanical sensitivity 
of the sensor plate (scaled as the ratio between the arisen 
stress and the applied stress [4]) can further be formulated 
using the reduced stiffness relationships for the layers and 
the re-occurrence relationships among the modified Bessel 
functions [5]. 
 

3. NUMERICAL REMARKS  
For the purpose of demonstration, 2-layered 

un-symmetric plates are implemented with various 
thicknesses for the layers in stacking and a range of ratios 
of Young’s moduli.  The considered ratios between the 
layer thickness are t1/t2=1.0, 0.5, 0.25; and those between 
the Young’s moduli of the layers are taken to be, 
E1/E2=10.0, 5.0, 2.0, for studying the effect of mismatch in 
modulus.  Poisson’s ratios for all the layers are assumed to 
be the same as which for a typical silicon-nitride, i. e., 
ν1=ν2=0.27 [1].  In additions, the same range of initial 
tension as which used by Sheplak and Dugundji [1] is 
adopted here, i. e., k =1, 5, 10, 20, 50.  It should be noted, 
however, although the normalized solutions following the 
present current approach appear to be the same as which 
given by Sheplak and Dugundji [1], provided the present 

 replaces k  in [3], the values for tension parameter 
are taken for  here, instead of , to have an insight of 
the effect of coupling stiffness due to the layer 
un-symmetry.  The obtained solutions include the 
normalized geometrical responses of the plates, i. e., the 
lateral deflection, slope, and curvature, versus the 
dimensionless radial coordinate. 

Dk
k Dk

A 2-layered plate with E1/E2=1.2 and a ratio of 
t1/t2=0.25 between the layer thicknesses is considered, first, 

simulating a slightly un-symmetric condition.  The radial 
variation of the lateral slope is presented in Fig. 2.  It is 
seen, the results correlates very well with which given by 
Sheplak and Dugundji [1], throughout the range of the 
employed initial tension. 

To study the effect of initial tension upon the 
mechanical sensitivity of the un-symmetric layered plate, 
the presented approach is further implemented with the 
layer materials and configurations of Zhou et al. [6].  With 
a slightly un-symmetric consideration for a 3-layered plate 
such that the Young’s moduli are given as, E1, E2 and 
E3=1.7, 1.6, 1.6 (1011 Pa) the Poisson’s ratios to be all taken 
to be 0.27, and the layer thickness are 0.4, 0.2, and 0.4 (10-6 
m), the normalized solutions for the radial stress on the top 
( rtσ ) and the bottom surface ( rbσ ), as well those for the 
circumferential stress on the top ( ttσ ) and the bottom 
surfaces ( tbσ ) are presented in Figures 3 – 6, respectively. 
Numerically, the solutions for the radial stress on the top 
surface are found to be identical to the results calculated by 
using the formulation presented in Saini et al. [5], provided 
the present problem configuration is considered. 
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Fig. 1 Clamped and Laterally Loaded Un-Symmetrically 

Layered Plate under Initial Tension 
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Fig. 2. Slope of 2-layered Plate, E1/E2=1.2, t1/t2=0.25 
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Fig. 3 Sensitivity, rtσ /q, on top surface of a 3-layer Plate 
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Fig. 4 Sensitivity, rbσ /q, on top surface of a 3-layer Plate 
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Fig. 5 Sensitivity, ttσ /q, on top surface of a 3-layer Plate 
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Fig. 6 Sensitivity, tbσ /q, on top surface of a 3-layer Plate 
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