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ABSTRACT 
 

The shrinking CD into nano scale demands more 
accurate and stable dose control. Recently, the immersion 
lithography has added extra disturbing factors, such as 
bubbles, particles which directly impact on current in-line 
metrology and dose control performance. We present a 
methodology to characterize the dose metrological data and 
control approach to secure the metrological fidelity for 
accurate and stable dose control. First, the time sequence 
and power spectral domain analysis generate the statistical 
tendency which shows the confidence area of metrological 
feedbacks. Then, the 2nd order data fusion from both in-situ 
and in-line metrological channels is employed to generate a 
statistical significance of critical external perturbations. 
Thereafter, an Extended Kalman Filter (EKM) is 
implemented to integrate to a knowledge based autonomous 
calibration controller. The controller design is verified 
successfully to remove the critical external perturbation and 
to predict the next metrological calibration timing.  
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1 INTRODUCTION 
In nanoelectronic production, optical lithography has 

extended to 65nm and soon will be a 45nm node on VLSI 
patterning. Experience shows that dose and focus depth are 
the main factors for usable process latitude on lithography 
process. With the shrinking critical dimension, more 
accurate and stable dose control [1] is required to keep the 
process in a good yield window. In order to achieve this 
goal, a delicate feedback mechanism for dose control in real 
time is essential. However, current litho tool lacks the 
technology needed to detect the accumulated dose level on 
wafer surface during pattern exposures. Therefore, extra 
periodical calibrations are required to align different 
channels of metrological feedbacks. Recently, the 
immersion lithography has added an extra disturbing factor 
to the process, from bubbles and particles (Fig.1) which 
directly impact current in-line metrology and dose control 
performance. Several works [2, 3] have reported the 
potential bubble effect on imaging distortion and process 
latitude shrink in various scenarios. Various random defects 
processes and even lengthy yield ramp up can be induced 
by the presence of bubbles. In order to minimize random 

defects and speed up process optimization, a more robust 
dose control mechanism in immersion lithography process 
has to be addressed. This motivates the present study. 

 
Fig 1 Scenario in immersion lithography 

 
In the Kohler illumination system, there are two 

photovoltaic sensors in the light path. One is located in the 
light path and takes the in-situ split light measurement. The 
other is an in-line sensor, located on the wafer stage corner 
and is used for specific sensor calibration or optics 
performance qualification. Under this metrological 
configuration, the dynamic performance of dose level 
control on the wafer relies on the real time feedback of the 
in-situ sensor and proper periodical calibrations of the in-
line sensor. In the production environment, the in-situ and 
in-line sensors provide the feedbacks for dose stability. The 
exposure latitude calibration through focal exposure matrix 
on wafer is a common practice. The in-situ sensor provide 8 
levels of power density to explore the power spectral 
response of the measurement and the in-line sensor 
generates the synchronized measurement that can be used 
for the measurement variation reference. 
 
2 DESIGN OF EXPERIMENT AND DATA 

ANALYSIS OF METROLOGICAL 
PERFORMANCE 

The 8 levels of power spectral response data and the 
difference between the in-line and the in-situ sensor are 
collected to explore the suspected micro bubble effect. First, 
in time domain, we explore the measurement variation and 
repeatability in 13 sampled time sequence with 8 levels of 
power density.  The averaged measurement variation shows 
the non-unique behavior between different power density 
levels with respect to time (Fig.2). The averaged 
measurement repeatability reveals significant variation in 
low power density levels (Fig.3).  Second, we explore the 
correlation between measurement variance and repeatability 
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under different power density levels.  The result shows both 
power spectral and time series domains suffer from 
measurement disturbance and their correlation also varies 
with different power density levels (Fig.4).  Through a 
regression analysis, the metrological tendencies of various 
test results (Fig.5) are identified.  The tendency shows that 
the confidence area of metrological feedbacks selection 
should lie on the conjunction of variance, repeatability, 
time sequence and power spectral domain.  Typically, the 
probability of measured variance is Gaussian, implying that 
the next measurement result’s location is correlated with 
the previous measured variance and shows Gaussian 
distribution in the noise band. The probability of bubble 
effect on the measurement is non-Gaussian. This implies 
that the measured “surge” or “disturbance” occurs 
randomly. In order to consolidate the feedback data and 
extract meaningful significance without scarifying the 
original measured data, we further fuse the derivative 2nd 
order of variance and repeatability data from both in-situ 
and in-line sensors and generate a statistical significance of 
the critical external perturbation (Fig.6). This external 
perturbation is most likely due to random bubble effect in 
measurements and has to be removed before being misused 
for feedback control. 

 

 
Fig.2 Measured variance in time domain 

 
Fig.3 Measured repeatability in time domain 

 

 
Fig.4 Measured Power Spectral domain trend of variance and 

repeatability propagation 

 
Fig.5 Measured Power Spectral domain distribution tendency 

 
Fig.6 Statistical significance extracted from 2nd order fused data 
 
In order not to remove the data that represent potential 
sensor drifting from aging, the filter design has to depend 
on the confidence level and confident area of the calibration 
period. 
 
3 PROCESS MODELING AND CONTROL 

IMPROVEMENT 
It is noted that the timing for sensor calibration depends on 
two scenarios: (1) the sensed data show a consistent drifting 
or offset that is out of control limit; (2) the variation 
between in-situ and in-line sensors shows contradictive 
behavior and can be examined by its 1st order and 2nd order 
fused data. The timing can be weekly in periodical 
maintenance while the 2nd order fused data showing longer 
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term smooth drifting. The decision has to base on the 
knowledge through several batches of observation.  
To improve the dose control reliability and trigger the 
action automatically, an autonomous calibration controller 
is proposed (Fig.7).  

 
Fig.7 Autonomous calibration controller 

 
To deal with the discrete feedback system, we use the state 
space approach to handle the multivariate data and the 
nonlinear, non-Gaussian process. To deploy a statistical 
modeling of the system and noise behavior, we consider the 
evolution of the state sequence { }NkX k ∈, of a dose 
target as given by 
 

( )11 , −−= kkkk VXfX      (1) 
 
Where znx nnn

kf ℜ→ℜ×ℜ:  is a nonlinear function of 

the state, ( )NkVX kk ∈−− ,, 11  is a process with noise 

sequence and nz nn ,  are dimensions of the state and 

process noise vectors respectively, and N is the set of 
natural numbers. The object of tracking is to recursively 
estimate kX  from measurement 
 

( )kkkk nXhZ ,=       (2) 
 
where znx nnn

kh ℜ→ℜ×ℜ:  is a nonlinear function and 

Nknk ∈,  is a measurement noise sequence.  In particular, 

we seek filtered estimates of kX  based on the set of all 
available measurements from time sequence 1 up to 
sequence k and denoted as ( )kiZZ ik ,...,1,:1 == .  From a 
Bayesian perspective, the tracking problem is to recursively 
calculate some degree of belief in the state kX at time 

sequence k .from given data ( )kiZZ ik ,...,1,:1 == . Thus, 
it is required to construct the probability density function 
(pdf) ( ) ( )000 XpZXp ≡  of the state vector, which is also 

known beforehand.  Then, in principle, the pdf ( )kk ZXp :1  
may be obtained, recursively, in two stages; namely 
prediction and updating. Suppose the required pdf 
( )1:11 −− kk ZXp  at time 1−k  is available. The prediction 

stage involves using the system model to obtain the pdf of 
the state at time sequence k via the Chapman-Kolmogorov 
equation as follows: 
 
( ) ( ) ( ) 11:1111:1 −−−−− ∫= kkkkkkk dXZXpXXpZXp   (3) 

 
Note that in (3), use has been made of the facts that 
( ) ( )11:11, −−− = kkkkk XXpZXXp  as (1) describes a Markov 

process of order one. The probabilistic model of the state 
evolution ( )1−kk XXp  is defined by system equation (1) 

and the known statistics of 1−kV . At time sequence k , a 

measurement kZ becomes available, and may be used to 
update the prior state via Bayes rule. 

 

( ) ( ) ( )
( )1:1

1:1
:1

−

−=
kk

kkkk
kk ZZp

ZXpXZp
ZXp     (4) 

 
Where the normalized constant 
 
( ) ( ) ( ) kkkkkkk dXZXpXZpZZp 1:11:1 −− ∫=    (5) 

 
depends on the likehood function ( )kk XZp  defined by the 
measurement model of equation (2) and the known 
statistics on kN . In the updating stage (4), the 

measurement kZ is used to modify the prior probability 
density to obtain the required posterior probability density 
of the current state. The recurrence relations (3) and (4) 
form the basis for the optimal Bayesian solution. 
 

4 OPTIMAL DESIGN BY EXTENDED 
KALMAN FILTER 

To treat the local nonlinearity of the noise behavior, an 
Extended Kalman Filter (EKF) [4] is used. Assume the 
posterior density at every time step can be approximated as 
Gaussian. Then, parameterized by mean and covariance, 
models (1) and (2) can be rewritten as, 
 

11 −− += kkkk VXfX      (6) 
 

kkkk nXhZ +=      (7) 
 
The functions kf and kh are known matrices defining the 
linear function. The covariance of 

1−kv  is 
1−kQ , and the 

covariance of kn  is kn . We consider the case when 1−kv  

and kn have zero means and are statistically independent. 
The EKF based on ( )kk ZXp :1  is approximated by a 
Gaussian as 
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( ) ( )111111:11 ,; −−−−−−− ≈ kkkkkkk pmXNZXp    (8) 

( ) ( )1111:1 ,; −−−− ≈ kkkkkkk pmXNZXp     (9) 

 
( ) ( )kkkkkkk pmXNZXp ,;1:1 −≈     (10) 

 
Where  
 

( )111 −−− = kkkkk mfm      (11) 

 
T

kkkkkkk FPFQP ˆˆ
1111 −−−− +=      (12) 

 
( )( )11 −− −+= kkkkkkkkk mhZKmm     (13) 

 
11

ˆ
−− += kkkkkkkk PHKPP      (14) 

 
Note that ( ).kf and ( ).kh  now are nonlinear functions, 

and kF̂ and kĤ are localizations of these functions as follows: 
 

( )
11;ˆ
−−== kk

k
k mx

dx
xdf

F      (15) 

 
( )

1;ˆ
−== kk

k
k mx

dx
xdhH      (16) 

 
k

T
kkkkk RHPHS += −

ˆ
1

     (17) 

 
1

1
ˆ −

−= k
T

kkkk SHPK      (18) 

 
5 DESIGN VALIDATION 

We examine the EKF filter design for the modeled 
process on two goals: (1) to verify if the filtered data can 
result in a Gaussian distribution; (2) to verify the filtered 
data still retain the representation of long term drifting 
behavior. The result denoting the first goal is shown in 
Fig.8.  It indicates a successful approximation of Gaussian 
in distribution after filtration of the noised data. This is 
related to measurement system behavior without significant 
random disturbance.  Then, based on this process behavior, 
we further investigate if the behavior can be predicted in 
longer term for calibration purpose.  For the metrological 
process drifting prediction, a polynomial fitting is used on 
the filtered data and the result is depicted in Fig.9. The 
result shows this metrological process being slow drifting, 
which is crucial from natural aging of the sensors. This 
predicted trend also suggests a calibration timing on when 
the dose control limit is about to be out of range. In this 
case, a recursive of two-week measurement data suggests a 
four-week calibration period be necessary. By 
implementing this behavior into the autonomous calibration 
controller, the auto calibration can be achieved. 

 
Fig.8 EKF filtered data distribution 

 
Fig.9 Predicted measurement process performance for 

calibration timing 
 

6 CONCLUSIONS 
We present a methodology to characterize dose 

metrological data with errors most likely coming from 
bubble effect in the immersion scenario. The Extended 
Kalman Filter (EKF) is used to extract masked information 
to construct a knowledge based autonomous calibration 
controller. This controller is successfully validated to 
optimize tool metrological calibration cycles and retain 
metrological fidelity. 
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