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ABSTRACT 

This paper answers the frequently asked question, “How 

accurate are the approximate baseline long-and-wide-

channel MOS transistor models that have been used to 

develop the compact models for computer-aided circuit 

designs?”  Three commonly used surface-potential-based 

(US=q S/kT) approximations of the bulk-charge are 

evaluated: QB  (i) (US)1/2, (ii) (US 1)1/2, and (iii) 

[US 1+exp( US)]1/2.  Self-consistent remote charge 

neutrality boundary condition, minority carriers, and space 

constant impurity concentration and oxide thickness are 

used.  Percentage deviations of the approximations from the 

non-compact baseline model are computed for DC drain 

current, drain- and trans-conductances.  Approximation (i) 

shows significant devia-tions, ~16% at threshold diverging 

rapidly with deepening into the subthreshold range.  

Approximations (ii) and (iii) show a few percent (1% to 

2%) deviations in both inversion and subthreshold ranges, 

but diverge widely below sub-threshold and in 

accumulation.  A new analytical model is tested and shows 

better than 10% accuracy in accumulation. 

Keywords: MOSFET, MOST, bulk charge approximations, 

baseline model, four-component space-charge theory, 

surface potential model, self-consistent remote charge 

boundary condition. 

1 INTRODUCTION

The existing compact models of Metal-Oxide-Silicon 

field-effect Transistor (MOSFET or MOST) can be sorted 

into three groups [1,2,3]: the threshold-voltage [4,5], 

inversion-charge [5,6], and surface-potential [6] models, the 

latter two succinctly compared in [3].  All are analytical 

approximations to the 4-terminal (Gate, Drain, Source, 

Basewell or Body) electrical characteristics of the 2-

dimensional (2-D) transistor.  In the initial approximations 

starting with a long-wide baseline geometry, the 2-D 

transistor is partitioned into a 1-D MOS capacitance 

(MOSC) governed by the x-equation which gives the input 

gate-voltage equation, VG(US), and a 1-D variable 

resistance (MOSR) or transistor (MOST) governed by the 

y-equation which gives the output drain-current equation,  

ID(US).  The surface potential, US=q S/kT, is the 

independent variable.  It is the total variation or total 

bending of the one-electron energy-band in the x-direction 

from the SiO2/Si interface (x=0) to the remote boundary 

(x= ).  It couples these two 1-D equations, VG(US) and 

ID(US), to give the output drain current as a function of the 

input gate voltage, or the transfer characteristics, ID(VG),

and the output drain current as a function of the output 

drain voltage,  or the output characteristics, ID(VD).  The 

source and basewell (or body) voltages, VS and VB, are 

used as the reference or parameter.  In the last 25 years 

(since about 1980), compact-model-development engineers 

have been developing fast convergent algorithms to solve 

the implicit equation, VG(US), in order to give very accurate 

surface potential US (~ <10 10 error near flatband, US 0), 

at a given VG, over the entire VG range from accumulation, 

through flatband and subthreshold, into inversion.  Such 

accuracy is required for circuit design applications using 

computer-aided-design circuit simulators such as SPICE.  

This was circumvented in the threshold-voltage compact 

models by use of the linear approximation, UG US to give 

ID[US(VG)]=ID[VG(US)]=ID(VG). The Berkeley threshold-

voltage model, BSIM [7], has been the industry standard for 

the last decade (1995-2005) because of computation speed 

and equation simplicity for user modifications, in spite of 

the many empirical approximations (in addition to the 

threshold voltage assumption) which it has used to 

represent the 2-D small-geometry effects, the spatially 

varying material parameters, and the large-deviation-from-

thermal-equilibrium or hot-carrier effects. Linearization 

was also employed by the inversion charge model [3] to 

replace the surface potential by inversion-charge as the 

independent variable. 

With the many-order increase of computer speed in 

recent years, revival of the intrinsically more accurate 

surface-potential-based model was proposed as the baseline 

model [8].  In May 2005 the international Compact Model 

Council selected two surface-potential-based compact 

models as the finalists for the next generation MOSFET 

compact-model standard [9],  the PSP (Penn-State-

University and Phillips) [10] and the HiSIM (Hiroshima 

University) [11] models.  Recently, PSP was selected by a 

slim margin, 16 vs 14 votes. 

Both HiSIM and PSP models employ the surface 

potential to analyze their long and wide channel baseline 
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MOS transistor.  Both stated the use of the 1978-Brews 

charge-sheet approximation [12] for the y-equation 

(current-equation) by confining the minority carrier or 

inversion charge density to a thin x-layer at the SiO2/Si 

interface, x=0, which was rigorously expressed by the Dirac 

delta-function (x) [1].  HiSIM fully implements the 

nonlinear implicit x- or voltage-equation VG(US).  PSP 

makes a further simplification by linearization.  The surface 

potential is then used as the independent variable to 

include, by analytical approximation, all the geometric, 

bias, and physical effects [2,10,11], such as short-channel, 

narrow-channel, bias- and geometry-dependences, 

longitudinal field gradient (The term ‘lateral’ field gradient 

has been used, but this is a misnomer, since x-dependence 

or lateral-dependence of the y-component electric field in 

the long-wide channel has not been taken into account in 

the ‘charge-sheet’ (x) approximation of the baseline 

model.), finite-thickness space-charge-layer in 

polycrystalline-silicon-gate known as gate-depletion, 

quantum-mechanical confinement in the silicon surface 

layer at the SiO2/Si interface, thin-gate-oxide tunneling, 

pocket implants at the drain and source regions, bias 

dependent overlap capacitances, gate-induced drain 

leakage, noise, and others. 

Several leading compact-model developers have 

recently indicated to us a strong interest on knowing the 

accuracy of the baseline (long-wide channel) surface-

potential-based compact models which they have used, 

since their baseline models originated from our analyses in 

1964, 1965 and 1966 [4,5,6].  In response, this paper gives 

an evaluation on the accuracy of the DC characteristics.  RF 

characteristics will be reported in the future. 

2 THEORETICAL FORMULAS 

The two-dimensional (2-D) direct-current (DC) 

equations for a wide (z-direction) and long (y-direction) 

electron-channel (n-channel) MOS transistor are given by 

the Poisson Equation for the electric field and electric 

(electrostatic) potential and the two-mechanism current 

equation of the drift and diffusion mechanisms.  With a 

basewell-channel impurity concentration of PIM(x,y), an 

electron drift mobility of µn(x,y) and an electron diffusivity 

of Dn(x,y), in a semiconductor with dielectric constant 

(x,y)= , these two equations are given by 

E(x,y)= (x,y)=q[P(x,y) N(x,y) PIM(x,y)]  (1) 

 JN(x,y)=qµn(x,y)N(x,y)E(x,y)+qDn(x,y) N(x,y) (2) 

The exact solutions can only be obtained numerically.  

To develop analytical compact models in order to give high 

accuracy in short computation times for extractions of 

device and materials parameters from experimental data, 

the following assumptions are made first to give the 

baseline model.  Refinements of the baseline model are 

then made (beyond the objective of this paper, see 

references cited by [2] for the refinements) by analytical 

approximations to account for the realistic effects from 2-D 

small-geometry, spatial-varying materials properties, and 

deviation from thermodynamic equilibrium at high electric 

fields (from small-geometry).  This paper provides 

theoretical accuracy of the analytical baseline compact 

models whose deviations come from assumptions made in 

their derivations from the exact integral equations.  The 

assumptions are as follows.  (i) The p-type basewell 

impurity concentration is spatially constant, PIM(x,y)=PIM,

in the n-type inversion channel region.  (ii) The channel is 

terminated by two highly-doped n-type regions, the 

n++Source and n++Drain, and the short-channel effects 

from the Drain and Source n++/p-basewell junction space-

charge-regions are not taken into account.  (iii) The electric 

field (in the x-direction), produced by the voltage applied 

between the gate and the basewell or body contacts, 

dominates over the electric field (in the y-direction), 

produced by the voltage applied between the drain and 

source, |EX(x,y)| >> |EY(x,y)|.  Based on these three 

assumptions, the 2-D Poisson Equation, (1), is then 

simplified to the 1-D Poisson Equation in the x-direction. 

EX(x)/ x= (x,y)=q[P(x,y) N(x,y) PIM]  (3) 

The current is assumed to be confined in the y-direction, 

valid for long channels.  Then, the vector current equation, 

(2), reduces to the 1-D current equation in the y-direction.  

It is further simplified by assuming small deviation from 

thermal equilibrium or quasi-equilibrium as coined by 

Shockley, i.e. the electron kinetic temperature is negligibly 

higher than the lattice-vibration temperature, Te(x,y,z) = 

T(x,y,z), which is spatially constant or has negligible local 

thermal heating T(x,y,z)=T.  It is further assumed that 

electron and hole concentrations are low, so that the 

Boltzmann approximation or exponential representation can 

be used, N=niexp(+U UN) and P=niexp(+UP U). The 

normalized electric potential is U=q /kT qVI/kT and the 

normalized electrochemical or quasi-Fermi potentials 

(coined by Shockley) for electrons and holes are UN=

qVN/kT and UP=qVP/kT.  Then the Einstein relationship 

holds, Dn[PIM(x,y),Te(x,y)]  µn[PIM(x,y),Te(x,y)]  =  

Dn(PIM,T) µn(PIM,T) = kT/q.  These reduce y-component of 

the 2-D conduction current density, JNY(x,y), given by (2), 

to a simpler 1-D 2-term equation, and also a 1-D 1-term 

gradient equation of electrochemical potential, or quasi-

Fermi potential, VN(x,y).   Using the macroscopic electric 

field, EY(x,y) V(x,y)/ y= (kT/q) U(x,y)/ y, these are: 

JNY(x)=+qµnN(x,y)EY(x,y)+qDn N(x,y)/ y  (4) 

     = qµnN(x,y) VN(x,y)/ y   (5) 

Using these assumptions and approximations, the 1-D 

Poisson Equation, (3), simplifies to 

2
U/ X

2
=[exp(+UP U) exp(+U UN) (PIM/ni)]  (6) 
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where X is the x-distance normalized to the intrinsic Debye 

length, X=x/LDi, and LDi = ( kT/2q2ni)
1/2.  All the three 

potentials, U, UP, and UN, are functions of (x,y).  The 

Boltzmann or exponential transformation of carrier 

concentrations and electrochemical or quasi-Fermi 

potentials used in (4) to give (5) are 

N(x,y)=niexp{(q/kT)[+V(x,y) VN(x,y)]} niexp(+U UN) (7) 

P(x,y)=niexp{(q/kT)[+VP(x,y) V(x,y)]} niexp(+UP U) (8) 

If it is assumed that the electrochemical potentials or the 

quasi-Fermi potentials of electrons and holes are 

independent of x, UP(x,y)=UP(y) and UN(x,y)=UN(y), first 

given in 1965-Sah [5], then the Poisson Equation, (6), can 

be integrated along x at a given y, once by quadrature in dU 

and twice in dxdx.  Then, the boundary conditions of the 

electric field and electric potential or applied voltage can be 

applied at the three interfaces, the gate-metal/oxide 

(x= XOX), oxide/Silicon (x=0) and Silicon/body-metal 

(x= ). The x-independence assumption of the quasi-Fermi 

potentials is consistent with the assumptions of the current 

is flowing only in the y direction and the y-component of 

the electric field is small compared with the x-component 

of the electric field in the semiconductor and also in the 

gate insulator.  The combination of the two integration 

solutions (in dU and dxdx) gives the voltage-equation [1]: 

UGB UFB–US=UOX=2UII
1/2

×SignUS×FSI(US,UP0,UP ,UN0,UN ) (9) 

where the square of the normalized normal or x-component 

of the electric field is  

FSI
2
=+[+exp( US)+(+US 1)exp( UP0+UP )]exp(+UP0)

    +[+exp(+US)+( US 1)exp(+UN0 UN )]exp( UN0)  (10) 

Here, UII=(q/kT)( Sqni/2CO
2) and CO= O/xO.  (UP0,UN0)

and (UP ,UN ) are respectively the (hole, electron) quasi-

Fermi potentials at interface (x=0) and at the remote 

boundary (x= ).  In this inversion n-channel MOST 

example, the first three terms in (10), with multiplier 

exp(+UP0), are from majority carriers or holes in the p-

basewell and the second three terms, with multiplier 

exp( UN0), are from minority carriers or electrons.  In the 

x-independent quasi-Fermi assumption used to obtain (9) 

and (10), we wrote UP0(y) UP(x=0,y), UP (y) UP(x= ,y), 

UN0(y) UN(x=0,y) and UN (y) UN(x= ,y).  Three 

solutions of (10) were given by Sah in 2005-Sah [1].  {See 

Eqs.(21.25), (21.28) and (21.31) on pp. 359-361 of [1] 

where (y) UN(y) UP(y).} (i) The term exp( UNP) or 

exp( ) multiplies only one of three minority carrier 

(electron) terms in (10), [exp(+US)], using the assumptions 

UN0=UN UF, UP0=UP UF, and UN =UP =UF. (ii) The term 

exp( UNP) or exp( ) multiplies only two of three minority 

carrier terms in (10), [exp(+US) 1].  This was derived in 

1964 and used in the 1965-Sah-Pao x-equation [5]. It was 

more rigorously re-derived by Sah in 2004 [1] assuming 

UN0=UN UF, and UN =UF=UP=UP0=UP .  This was used by 

all subsequent compact-model developers since its first use 

in 1965-Sah-Pao [5].  It has the imaginary x-component 

electric field trouble [1] near flatband and causes 

nonconvergence in the numerical iteration solution of US

for a given UGB near the flat band UFB.  (iii) This is the Self-

Consistent Remote Charge-Neutrality Solution derived by 

Sah in 2004 [1] which takes into account of minority 

carriers at the remote boundary to give UN =UN0=UN UF

and UP =UP0=UP UF, rather than the incorrect relations 

UN =UN0=UN=UNP+UF and UP =UP0=UF, then the term 

exp( UNP) or exp( ) multiplies all three minority carrier 

terms, [exp(+US) US 1].  This is used in this paper as the 

baseline solution.  The inconsistent solutions (i) and (ii) are 

listed here for history but also because they correspond to 

solutions of finite recombination at the remote boundaries 

and in the p-bulk or p-basewell, although their solutions 

near flatband would still be incorrect. 

However, (iii) gives a divergent drain current at 

flatband, when computed by integrating (5) across the 

transistor cross-sectional area, dxdz, as z , at any y.  

This is due to the assumptions of no-recombination-

generation and x-independent electron and hole quasi-

Fermi-potentials.  This divergence of the drain current was 

not noticed in previous papers since the drain current near 

flatband is so small that it was neglected by all previous 

investigators. To remove this divergence, the equilibrium or 

flat-band minority carrier concentration at the remote 

boundary, N , is subtracted from the total electron concen-

tration, N, in (5).  This gives the non-divergent or bounded 

current-equation which does not diverge at flatband. 

ID= z y x[JNy(x,y) JNyFB(x,y)]dx(dy/L)dz

  =(Z/L) y xqµn[N(x,y) N(x= ,y)][ VN(x,y)/ y]dxdy (11) 

where z=0 to Z, y=0 to L or UN=UN(y=0)=UN0 to 

UN(y=L)=UNL, and x=0 to  or U(x=0,y)=US(y) to 

U(x= ,y)=0.  Equation (11) is the 1-term double integral 

current equation in 1966-Pao-Sah [6], with the flatband 

current subtracted here.  Using the U’s and assuming 

constant mobility, (11) reduces 

SNL

0N

U

0 PNXS

N

U

U

NDiinD
)U,U,U(FSignU

dU1)Uexp(
dU)Uexp(LnqD

L

Z
I

 (12)

where 1 in [exp(+U) 1], comes from the subtraction of 

the unbounded flatband current. The multiplier or 

normalization factor, INORM=(Z/L)×qDnniLDi is 

5.55×10 11A/(Z/L) or Ampere per square, (Z/L)=1, for the 

device parameters we are using in this paper, 

PIM=1×1018cm 3, XOX=2.0nm, n=400cm2/V-s, and 

ni=1.33×1010cm 3 at T=300K.  The following are used. 

[FX(U,UN,UP)]
2
=[exp( U)+U 1]exp(+UP)

             +[exp(+U) U 1]exp( UN)  (13) 

P /ni=exp(+UP)=[(PIM/2ni)
2
+exp( UNP)]

1/2
+(PIM/2ni) (14) 
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N /ni=exp( UN)=[(PIM/2ni)
2
+exp( UNP)]

1/2
(PIM/2ni) (15) 

UGB UFB US=2UII
1/2

×SignUS×FSI(US,UN,UP)  (16) 

[FSI(US,UN,UP)]
2
=[exp( US)+US 1]exp(+UP)

              +[exp(+US) US 1]exp( UN)  (17) 

The drain conductance or output conductance with input 

short-circuited is given by the derivative of ID with respect 

to VDB keeping VGB and VSB constant.  Similarly, the 

transconductance is obtained.  They are 

SLU

0 DB

2

iIMPLNLX

DB
SLDiin

DB

D
db

)Uexp(4)n/P()U,U,U(F

dU)Uexp(1)Uexp(
SignULnq

L

Z

V

I
g

(18)

NL

0N

SNSP

U

U

UUUU

IISPNSSI

NN
Diin

GB

D
mb

)e1(e)e1(eUSignU)U,U,U(F

dU)Uexp(1)Uexp(
Lnq

L

Z

V

I
g

(19)

The multiplier or conductance normalization factor is 

gnorm=(Z/L)×q nniLDi=INORM/(kT/q). 

Because of the substantial numerical integration times, 

the above surface-potential-based equations of ID, gdb, and 

gmb, of the long-wide-channel baseline transistor have not 

been used by compact modelers to develop short-narrow-

channel and non-constant impurity concentration realistic 

compact models.  However, due to their continuous 

property as a function of surface potential over the entire 

applied voltages without discontinuities, they are the bases 

for the second (next) generation of analytical compact 

models to include realistic geometries (short and narrow 

channels), spatially varying impurity concentrations, and 

nonequilibrium or hot carrier effects.  These short-narrow-

channel analytical compact models are then used to extract 

the numerical values of transistor parameters from 

experimental data, which are then used to generate the 

characteristics of the many different transistors in a circuit 

simulator such as SPICE to design optimized integrated 

circuits.  For example, one of the first attempts to increase 

the computation speed, widely followed later, was given in 

1978-Brews [12] who assumed two empirical 

approximations: (i) compressing the inversion layer into a 

conducting plane of zero thickness, called the charge sheet,

which really corresponds to the mathematically rigorous 

delta-function approximation of the minority carrier charge 

density.  As we shall see, it actually is not compressing the 

inversion charge distribution into a infinitesimal thin sheet,

but rather raising the longitudinal electric field EY(x,y) by 

flattening its x-distribution |EY(x,y)| ~< |EY(x=0,y)|; and (ii) 

depleting the carrier concentration in the space-charge 

layer. {See equation (8) in 1978-Brews [12].}  These 

approximations were recently given firmer theoretical 

grounds, but different device physics, in 2005-Jie-Sah [13] 

using the surface-potential-based space-charge theory 

obtained by Sah in 1996-Sah [14] which identified the 

channel current as a sum of four components, a drift current 

and a diffusion current that are carrier-space-charge-

limited, and a drift current and a diffusion current that are 

bulk-impurity-charge-limited from the ionized impurities in 

bulk or the base-well region.  This was known as the 4-

component-drain-current theory, which was rigorously 

derived by Sah in 1996-Sah [14] from the 2-Dimensional 

DC steady-state carrier transport equations that include 

drift, diffusion, generation, recombination, trapping and 

tunneling known as the Shockley semiconductor equations. 

Three simple approximations can be used to reduce the 

numerical integration of the majority-carrier charge (or 

bulk-charge) contributions in the basewell-channel to 

simple analytical formulas.  One of those gives 

mathematically results identical to the 1978-Brews 

empirical approximation, but different in device physics 

and mathematical rigor, and a second is the one commonly 

used by the inversion charge modelers.  These are listed 

below and labeled by their numerical Bulk Charge 

approximation indicators, which is in fact the only term that 

is approximated to give the compact models.  We shall use 

QB = QP interchangeable from now on, although QP (or QPB

where the subscript B is the Bulk-Charge Approximation or 

Model indicator, B=1 to 9) was the notation used for the 

exact or self-consistent solution while QB was the bulk-

charge used in earlier papers which neglected the 

equilibrium or flatband minority carrier concentration, 

hence, did not adhere strictly to the assumption of x-

independence of the quasi-Fermi potential, resulting in 

imaginary x-component DC electric field near flatband [1]. 

1BU)Uexp(2SignULqn

2B1U)Uexp(2SignULqn

3B)Uexp(1U)Uexp(2SignULqn

9B
U1)Uexp()Uexp()Uexp(1U)Uexp(

)Uexp(1U)Uexp(d
SignULqnQ

dU
)U,U,U(FSignU

)Uexp(1)Uexp(
LqndxPPqQ

SPSDii

SPSDii

SSPSDii

U

0 NP

P
SDiiPB

U

0 PNXS

P

Dii

0

BP

S

S

(20)

The multiplier or charge normalization factor is QNORM = 

qniLDi = INORM /[(Z/L)×Dn] = 5.37×10 12 C/cm2 =

33.5×106q/cm2 for intrinsic silicon at T=300K. 

The induced electron charge densities QNB = 

q(N NB)dx for the three bulk charge approximation (B=1, 

2, 3) can be obtained from Eqs. (20) and (21) which is 

derived using the voltage equation (16): 

dU
)U,U,U(FSignU

)Uexp(1)Uexp(

U

UUU

dU
)U,U,U(FSignU

1)Uexp()Uexp(
)U,U,U(FSignU2dU

)U,U,U(FSignU

1)Uexp()Uexp(

S

SS

U

0 PNXS
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SFBGB

U

0 PNXS

P
PNSSIS

U

0 PNXS
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(21)

1BU)Uexp()U,U,U(FSignU2

2B1U)Uexp()U,U,U(FSignU2

3B)Uexp(1U)Uexp()U,U,U(FSignU2

9BdU
)U,U,U(FSignU

)Uexp(1)Uexp(
)U,U,U(FSignU2

0BdU
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SPPNSSIS
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U

0 PNXS

P
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U

0 PNXS

N

NORM
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S
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(22)

Our previous seven-digit numerical designation is used 

here to label the approximations of these baseline compact 

models, YYXXFRB.  It was introduced to simplify curve 

labels and to give at-one-glance (A1G) the assumptions 

made in each of the compact models [1].  YY is the year 
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when the y-equation or current-equation was first used, for 

examples: (i) YY=66 for the 1966 Pao-Sah 1-term drain 

current formula with the double-integration of the product 

of the excess electron charge [N(x,y) N(x= ,y)] times the 

gradient of electrochemical potential UNP/ y transformed 

from dxdy to dU(x,y)dUNP(y), which was introduced by Sah 

in 1966 [6], and (ii) YY=96 for the 1996-Sah 2-term (drift 

and diffusion) 4-component (space-charge and bulk-charge) 

rigorously derived drift-diffusion formula [14].  XX is the 

year when the x-equation or voltage equation was first 

used, for examples: (i) XX=65 for the 1965 Sah-Pao 

voltage-equation derived by Sah in 1964 and first presented 

and used in 1965 [5], which was not self-consistent and 

gave imaginary DC electric field near flatband and (ii) 

XX=04 for the voltage equation derived by Sah in 2004 that 

determined and removed the cause of the imaginary DC 

electric field near flatband {See reference [31] cited in 

[1].}, such as in YYXX=6604 and 9604.  In the YYXXFRB 

label, F = 0 or 1 for the absence or presence of the flatband 

reference current, or the term N  = N(x= ,y)=NB(y) in the 

inversion charge integral, QN, whose presence in (11) 

eliminates the unbounded flatband output or drain-source 

channel current. The Remote charge-neutrality boundary 

conductions are denoted by R = 1, 2, 3 which indicate 

respectively the multiplication of channel voltage 

exponential exp( UNP) to one, two, or three minority or 

inversion carrier terms in (10). R=3 is the self-consistent 

case given in 2004-Sah [1] and used throughout this paper.  

R=2 is the inconsistent boundary condition, resulting in 

imaginary near-flatband electric field, introduced in 1965-

Sah-Pao [5] and used by all subsequent compact model 

developers since 1978-Brews [12].  The accuracy of using 

R=1 have not been tested.  B designates the exact and 

approximate bulk-charge formulas.  B = 9 is for evaluation 

the 1-D and 2-D integral numerically, hence ‘exact’.  For 

the 1966-Pao-Sah 2-D integration [6], the only assumption 

is the y-independent quasi-Fermi-potentials of electrons and 

holes, which gave (12) for the drain current and (18) and 

(19) for drain-conductance and transconductance.  For the 

1996-Sah 4-component model, B=9 means that the 1-D and 

2-D integrals are all numerically integrated exactly, except 

the 2-D integral accounting for the bulk-charge-reduction of 

the drift current which can only be numerically integrated 

in (x,y) or (U,UNP) by assuming the x-independence of the 

y-electric field for the y-integration,  The three (B=1, 2, 3) 

surface-potential-based bulk-charge approximations are 

defined in (20).    In the following, we will give a brief 

derivation of the ‘exact’ integral model (9604139) and the 

three analytical compact models (9604133, 9604132, and 

9604131). 

The equilibrium or flat-band minority carrier 

concentration N  is subtracted from the total electron 

concentration N in (4) to avoid unbounded ID near and at 

flatband.  This gives the two-mechanism (drift and 

diffusion) drain current equation: 

  ID= z y x JNy(x) dx (dy/L)dz

   =  Z/L y xqµn[N(x,y) N(x= )][ V(x,y)/ y]dxdy

Z/L y xqDn [N(x,y) N(x= )]/ ydxdy

 (23) 

Using the approximation V(x,y)/ y V(0,y)/ y,

which is the x-independence approximation of the y-

component of the electric field in Equation (220.24) of [1], 

rather than the delta-function approximation of the electron 

charge density in the 1978-Brews charge-sheet model [12], 

we obtain the 2-D numerical integral for the drift term, 

139P0.  The 1-D numerical integral for the diffusion term, 

139D0, does not require any assumption. These give 

ID=INORM ×(139P0+139D0)   (24)
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U

0 PNXS

N

U

U NP

S dUdU
)U,U,U(FSignU

1)Uexp()Uexp(

U

U
0P139

SDB
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 (25) 

using EY(x,y) EY(x=0,y) 
SL0S U

0 PLNLXSL

NL

U

0 0P0NX0S

0N

)U,U,U(FSignU

dU1)Uexp()Uexp(

)U,U,U(FSignU

dU1)Uexp()Uexp(
0D139

(26)

Using the x- or voltage-equation (16) and (21) in the 

inner integral of the 2-D drift component 139P0, (25), and 

the diffusion component 139D0,  (26), then we obtain the 

1996-Sah 4-component current equations [14] listed below. 

Compact Model YYXXFRB=9604139 (B=9) 

ID = INORM ×(139P3       + 139D3) 

= INORM ×(139P1+139P2 + 139D1+139D2) (27)

139P3 = 139P1 + 139P2  (28) 

139P1=[(UGB UFB US0)
2 (UGB UFB USL)2]/(2UII

1/2)

                                            carrier space-charge term (29)

NP

U

0 PNXS

P

U

U NP

S dUdU
)U,U,U(FSignU

)Uexp(1)Uexp(

U

U
2P139

SDB

SB

        ionized impurity charge or bulk-charge term (30)

139D3 = 139D1 + 139D2 (31) 

139D1=(USL US0)/UII
1/2                                        carrier space-charge term(32) 

0SSL U

0 0P0NX0S

0P

U

0 PLNLXSL

PL

)U,U,U(FSignU

dU)Uexp(1)Uexp(

)U,U,U(FSignU

dU)Uexp(1)Uexp(
2D139

              ionized impurity charge or bulk-charge term(33)

Note, the two carrier space-charge components, drift 139P1 

and diffusion 139D1, are independent of the impurity 

charge and are exact analytical solutions.  Therefore, they 

are universal for all surface-potential-based compact 

models that contain analytical bulk-charge approximations, 

i.e., 13BP1=139P1 and 13BD1=139D1 where B=1, 2, and 3 

and other values, (4,5,6,7,8), reserved for faster and more 

accurate new compact models. However, 139P2 needs to be 

transformed into the sum of two integrals in order to 

overcome numerical accuracy limit of the IMSL integration 

subroutines.  The 4-component current formulas for the 

compact models B=1, 2, and 3 are obtained from (20).  The 

B=2 approximation was used by 1978-Brews.  The B=1 is a 

approximation commonly used by the inversion charge 

models. These are summarized in the following paragraphs. 
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Compact Model YYXXFRB=9604131 (B=1) 

ID=INORM×(131P3+131D3)=INORM×(139P1+131P2+139D1+131D2)(34)

131P3=139P1+131P2     (35) 

131P2= (4/3)×{exp(UPL/2)×|USL|
3/2

exp(UP0/2)×|US0|
3/2

} (36) 

131D3=139D1+131D2     (37) 

131D2=2SignUS0×{exp(UPL/2)×|USL|
1/2

exp(UP0/2)×|US0|
1/2

} (38)

Compact Model YYXXFRB=9604132 (B=2) 

ID=INORM×(132P3+132D3)=INORM×(139P1+132P2+139D1+132D2)(39)

132P3=139P1+132P2    (40) 

132P2= (4/3)×{exp(UPL/2)×|USL 1|
3/2

exp(UP0/2)×|US0 1|
3/2

}  (41) 

132D3=139D1+132D2    (42) 

132D2=2×SignUS0×{exp(UPL/2)×|USL 1|
1/2

exp(UP0/2)×|US0 1|
1/2

}   (43) 

Compact Model YYXXFRB=9604133 (B=3) 

ID=INORM×(133P3+133D3)=INORM×(139P1+133P2+139D1+133D2)(44)

133P3=139P1+133P2    (45) 

2/3

0S0S0P
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(46)

133D3=139D1+133D2    (47) 

133D2=2×SignUS0×{exp(UPL/2)×[USL 1+exp( USL)]
1/2

exp(UP0/2) ×[US0 1+exp( US0)]
1/2

}  (48) 

Taking derivatives of drain current and using the 

derivatives of USL and US0 listed below, the output 

conductance and transconductance of these three compact 

models are readily obtained. 

0
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Induced or Excess Charge Densities 

       Figure 1 gives the induced or excess carrier charge 

densities (flatband as the reference) of the three compact 

models (B=3, 2, 1) and their accuracies.  The induced 

electron charge densities QNB(B=3,2,1) deviate significantly 

from the ‘exact’ integration solution, QN9(B=9), in the 

accumulation (VGF <0) range, while QN3(B=3) matches QN9

well in the VGF>0 range.  These large deviations prompted 

us to seek a better approximation or compact model.  For 

this purpose, we tried the 1961-Sah 3-layer approximation 

which was first used in the 1965-Sah-Pao [5] bulk-charge 

model and gave good results.  This will be designated as 

compact model B=6, with  QNB=QN6 . The analyses and the 

solutions are summarized in the following paragraphs. 

1S

U

0

PN

1S

U

U

U

0

PN

1e1

U

0 P

N

S

U

0 PNXS

N

NORM

6N

UU0when,U1)Uexp(d)Uexp()2/UUexp(2

UUwhen,dU)2/Uexp(U1)Uexp(d)Uexp(2)2/UUexp(

)U1(log2U,dU
U1)Uexp()Uexp(

1)Uexp()Uexp(

0UwhendU
)U,U,U(FSignU

1)Uexp()Uexp(

Q

Q

S

S

1

1

S

S

(53)

which is further approximated as follows 

3/4)Uexp(1U3/46/U2/SignUU1)Uexp()Uexp(
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(54)

Then the analytical approximations for the three US ranges 

or three layers of QN6 of (53) are given by: 

QN6(US,UN,UP)/( 2Qnorm)

=exp(UP/2)[US 1+exp( US)]
1/2

FSI(US,UN,UP), when US 0 (55a) 

=exp( UN UP/2){exp(US)[exp(US)-1+US]
1/2

              +[( US
2
/6+4US/3 4/3)exp(US)+4/3]/ 2},

                                    when 0> US U1 (55b) 

=exp( UN UP/2){exp(U1)[exp(U1)-1+U1]
1/2

              +[( U1
2
/6+ 4U1/3 4/3)exp(U1)+4/3]/ 2

              +exp(U1/2) exp(US/2)}, when US < U1 (55c) 

Figure 1b shows that QN6 matches the exact QN9 well in all 

gate voltage ranges.  The new analytical compact model 

B=6 is then 

Compact Model YYXXFRB=9604136 (B=6) 

ID=INORM×(136P3  + 136D3)    (56) 

136P3=133P3  when US >0,    (57a) 

     =0      when US 0    (57b) 

136P2=136P3 139P1    (58) 

136D3=133D3  when US >0,    (59a) 

     =INORM/QNORM×{QN6(US0,UN0,UP0) QN6(USL,UNL,UPL)}|

                                  when US 0 (59b) 

136D2=136D3 139D1    (60) 

3 ACCURACY OF THE BASELINE 

COMPACT MODELS 

In this section and its subsections, we present the 

numerical results of the transfer and the output 

characteristics of the drain or channel current, 

ID(VGF,VDS=constant,VSB=constant) and ID(VDS,VGF=

constant,VSB=constant). We also present the numerical 

results of the transconductance and drain or output 

conductance as a function of gate voltage,  

gmb(VGF,VDS=constant,VSB=constant) and gdb(VGF,VDS=

constant,VSB=constant), and as a function of the drain 
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voltage gmb(VDS,VGF=constant,VSB=constant),  and gdb(VDS,

VGF=constant,VSB=constant).  VGF=VGB VFB is the gate 

voltage relative to the flatband gate voltage, using the 

basewell or bulk=body as the voltage reference node.  We 

assume an ideal n-inversion-channel MOS transistor 

without a p/n-junction-isolated p-basewell on the p-body, 

designated by the node B.  We computed the current-

voltage (I-V) and conductance-voltage (g-V) characteristics 

of the four analytical approximations or compact models, 

designated by B=1, 2, 3, and 6. We also computed their 

percentage deviations from the ‘exact’ (numerically 

integrated) B=9 model.  The results are graphically 

illustrated in the following discussions. The B=9 model 

itself is not quite exact since the charge-sheet 

approximation [Note that this is really not the 1978-Brews 

empirical charge-sheet approximation.  It is actually the x-

independence approximation of the y-component of the 

electric field EY(x,y)~EY(x=0,y).] or correctly, the x-

independent y-component-electric-field approximation is 

used to make the current-equation or y-equation 

numerically integratable as explained the preceding section.  

The properties of the ideal inversion n-channel transistors 

assumed are: PIM(say Boron) = 1.0×1018 cm 3, gate oxide 

(SiO2) thickness XOX = 2.0 nm, and channel aspect ratio 

(width/length) = Z/L = 1, or the current is per square.  

Results of only the metal gate are presented assuming an 

aluminum metal, using the experimental aluminum vacuum

workfunction AL=4.679eV with an estimated experimental 

SiO2 electron affinity SiO2 = 0.9 to 1.0eV {See Table 413.1 

on p.150 of 1993-Sah-FSSE-SG [15].} although the silicon 

MOS designers have used the value 4.2eV for the Al/SiO2

barrier height. {See Table in section 563 on p.220 of [15].} 

This uncertainty only shifts the flatband gate voltage, VFB,

(by about 4.679 0.900  4.200 = 0.421V) not the features 

and results, since all use the gate voltage relative to the 

flatband, VGB VFB=VGF.

In all the transfer-characteristic (vs VGF) figures to be 

described, three light vertical lines are drawn to show the 

amount of surface band bending (UF and 2UF) at the p-base-

edge of the source n/p junction for the corresponding gate 

voltages.  They are labeled US=US0= 0, UF, 2UF for flatband 

(US0=0,VGF=0V), intrinsic surface and subthreshold voltage 

(US0=UF,VGF=VGsub), and on-set of strong surface inversion 

(US0=2UF,VGF=VGth).  These three vertical lines divide the 

gate voltage range ( 3V, 4V) into the four device-physics-

useful operational gate voltage ranges which are:   the 

accumulation range (US0 < 0), the deep-subthreshold range 

(0 < US0 < UF), the subthreshold range (UF < US0 < 2UF), 

and the strong inversion range (US0 > 2UF).

3.1 Induced electron and hole charge densities 

Figures 1(a) to 1(d) show the induced or excess electron 

and hole charge densities (relative to flatband) at the p-

basewell edge (y=0) of the n++Source/p-Basewell junction 

space-charge region at the SiO2/Si interface (x=0) which is 

the origin of our coordinate system, (x=0,y=0).  These 

figures give both the induced electron and hole charge 

densities for the four compact model approximations, 

B=1,2,3,6, QNB(y=0) and QPB(y=0), in Figs. 1(a) and (c), 

and also their percentage deviations from the exact 

numerical-integration non-compact model B=9 in Figs. 1(b) 

and (d).  The goodness of the approximation models is 

different for the induced hole and electron charges.  
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Figure 1:  Variation of excess carrier charge densities with 

applied gate voltage, (a) Holes, and (b) Electrons.  And the 

percentage deviation of (c) Holes and (d) Electrons of the 

two integration models 6604139 and 9604139, and of the 

four compact approximation models, 960413B (B=1,2,3,6). 

Generally, the four approximations are adequately good 

in the strong inversion range, VGF>VGFth=+1.262V, but are 
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poor in the subthreshold range and increasingly worsen in 

the deep subthreshold range and becoming rather bad in the 

accumulation range for B=1,2,3 (1 is the worse, 2 some-

what better, and 3 still better), except the specially designed 

3-layer compact model B=6 which is adequate (< ~10%) 

for all four ranges of VGF. These charge density illustrations 

are useful for developing better approximations for the 

inversion charge compact models and charge-controlled 

capacitance modeling for analog and RF circuit designs. 

3.2 Transfer characteristics 

Figure 2(a) gives the transfer characteristics 

ID(VGB VFB) of all six models: the two exact numerical- 

integration models (B=0,9) and the four 4-component 
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Figure 2:  DC transfer characteristics (IDB-VGF) of the two 

integration (6604139 and 9604139) and four analytical 

compact-approximation (960413B, B=1,2,3,6) models.  (a) 

Drain current.  Percentage deviation of drain current (b) 

Semilog and (c) Linear. 

analytical compact models (B=1,2,3,6).  Figures 2(b) and 

2(c) give the log and linear percentage deviation of ID of the 

four 4-component compact models (B=1,2,3,6) from the 

exact numerical-integration 4-component model B=9, 

IDB/|ID9|, and also the deviation of B=9 from B=0, 

ID9/|ID0|. The two ‘exact’ numerical-integration solutions 

are: (i) B=0 for 6604139, not using the 1965-Sah-Pao [5] x-

equation (R=2) but using the corrected 2004-Sah remote 

boundary condition (R=3) [1], and using the 1966-Pao-Sah 

[6] 2-D integration y-equation or current equation with the 

flatband current subtracted, and (ii) B=9 for 9604139 using 

the 1996-Sah 4-component 1-D and 2-D integration 

equations [14], not the 1978-Brews charge-sheet approxi-

mation [1, 12] but the x-independence approximation of the 
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component currents in the 4-component model, P2B, with 
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P2B. Percentage deviation of P2B from the integration model 

P29 (b) Semilog and (c) Linear. 
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longitudinal electric field, |EY(x,y)| ~< |EY(x=0,y)|, 

revealing the origin of ID(9604139) < ID(6604139). 

Figure 2(a) shows the success of computing the 

extremely small currents, 10 23 to 10 20 A/  in the 

accumulation range, VGF<0, which may have not been 

attained by other authors. 

Since B=9 (9604139) is the baseline to compute the 

deviation of the four analytical compact models 960413B 

(B=1,2,4,6), we need to first ascertain the accuracy of B=9 

baseline model.  This is demonstrated by computing the 

deviation of B=9 from the exact model B=0 (6604139).  As 

expected, the deviation is small, but not zero due to the x-

independence approximation |EY(x,y)| ~ < |EY(x=0,y)|.  

Indeed it is very small, as shown in Fig.2(b), in the accumu- 
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Figure 4:  Variation of drift current, P3B=P1B+P2B, with 

applied gate voltage of the one integration (B=9) and four 

analytical compact-approximation (B=1,2,3,6) models. (a) 

P3B. Percentage deviation of P3B from the integration model 

P00 (b) Semilog and (c) Linear. 

lation range, ID9/|ID0|<±1×10 11% for VGF<0, and the 

subthreshold range ID9/|ID0|< 0.5% for VGF< +1.262V 

(US0<2UF).  Then it rises, shown in the linear expanded 

scale in Fig..2(c), and peaks to about 2% at VGF=+1.4V

and US0~2UF+2, i.e. the onset of strong inversion.  This 

negative peak was also reported previously by us [1,13].  It 

is not expected if B=9 were truly exact.  Thus, the origin of 

this smaller ID of B=9 compared with that of B=0 computed 

from 1966-Pao-Sah 2-D using 1996-Sah must be due to the 

x-independence approximation of the longitudinal (y-axis) 

component of the electric field in the y-integration which 

gives too high a contribution of the bulk-charge-reduction

(P2<0) of the drift current in the x>0 region.  This was not 

recognized previously in the charge sheet assumption made 

in 1978-Brews.  The 1978-Brews terminology of charge-

sheet is erroneous because it implied lumping the 

distributed electron charges (x=0 to x= ) into a thin sheet 

at x=0 where the y-electric field is the highest, which would 

then overestimate the electron drift current contribution 

from electron charges that were originally at x>0 where the 

y-electric fields are lower.  A numerical proof of this 

analytical and device-physics-based proof will require 2-D 

(x,y) solutions, which will be attempted in a future report. 

Next, we examine the accuracy of the deviation from 

B=9 of the four analytical compact models, B=1,2,3,6.  

Figure 2(c) shows that the three compact models B=2,3,6 

give excellent results (< 3%) in the inversion and 

subthreshold range, VGF VGB VFB>+0.70V (US0>UF),

while the simplest compact model, B=1,  which is 

commonly used by the inversion charge models, starts to 

diverge rapidly (smaller) still in the inversion range, below 

about VGF=+1.5V.

Figure 2(b) shows that the accuracy of all three simple 

compact models (B=1,2,3) are very poor in the 

accumulation range VGF<0.0V (US0<0). This is because the 

three electron charge density terms [exp(+U) U 1]× 

exp( UN) in the normal or x-direct electric field, (13),  

[FX(U,UN,UP)]2 = [exp( U)+U 1]exp(+UP)+[exp(+U) U

1] exp( UN) are neglected when making the approximate 

analytical evaluation of (i) the 1-D bulk-charge integral of 

the x-integration to give the bulk-charge-enhanced 

diffusion current component and (ii) the 2-D (x,y)-

integration to give the bulk-charge-reduced drift current 

component, even though the electron charge density, 

QN(x,y) is so much smaller than the hole or bulk charge 

density, QP(x,y), and the latter determines the electric field 

in the denominator of the x-integration, and even though 

QN(x,y) is so squeezed into a thin sheet (x) at the SiO2/Si 

interface as described by 1978-Brews but rather determined 

by the x-distribution of the y-component of the electric field 

along the channel current flow.  An additional source of 

deviation was from keeping exp( U) of the three hole 

concentration terms of (13) constant in the dU(x) and 

dUPN(y) or dUS(y) integration, such as those in (46) for 

dUS(y) integration, in order to give the analytical solution 

for B=1,2,3.  To remedy this, the approximate analytical 

solution for B=6 is cooked up rigorously following the 3-

630 NSTI-Nanotech 2006, www.nsti.org, ISBN 0-9767985-8-1 Vol. 3, 2006



layer approximation method developed by Sah in 1961 for 

MOS capacitance-voltage calculation which was then used 

for MOS transistor in 1965-Sah-Pao [5].  This led to B=6 

compact model given by (56) to (60). 

In order to get a better understanding that could help to 

develop more accurate compact models, we shall use next 

several figures to get to the origins of the deviations.  We 

notice on the onset that the deviations, recognized as early 

as the 1965-Sah-Pao [5] as indicated by the title of this 

1965 article, are solely from the analytical approximations 

used to evaluate the two impurity bulk-charge integrals: the 

1-D x-integration of the diffusion current (26) and 2-D (x,y) 

integrations of the drift current (25).  Figures 3(a) shows the 

bulk-charge-reduced drift-current component P2B of all 

four compact models (B=1,2,3,6) and the reference or 

‘exact’ integral model (B=9).  As anticipated, the large 

deviations of the total drain or channel current of the four 

compact models shown in Figs.2(b) on semilog, and in 2(c)  
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on linear axes, indeed originated from the bulk-charge term 

P2 as verified by the shape and magnitude of the percentage 

deviation curves of the four compact models shown in 

Figs.3(b) and 3(c).  This is expected since the carrier space-

charge term P1 is already analytical and hence no error 

since no analytical approximation to P1 was needed for 

compact modeling.   Note especially the success of the new 

compact model B=6, which has extremely accurate P2 (note 

P2 is negative i.e. bulk-charge reduces drift current via 

threshold voltage shift first shown in 1965-Sah-Pao [5]) in 

the accumulation range with P26/P29 < ±10 13% shown in 

Fig.3(b) and < 2% in the deep subthreshold to the strong 

inversion ranges shown in Fig.3(c), which also shows that 

the new compact model B=6 is still inaccurate but only in a 

very small range near the flat-band 0<VGF<+0.3V where 

the asymptotic expansion about US=0 is made in the square 

root of the integrand of (57a) or (46) to make it integrable 

analytically.  The error reaches ~100% (a factor of two off) 
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at flat-band because of the three electron and three hole 

terms in the square root in the neglected denominator.  

However, this error in drift current at flatband is not much 

of a concern on the total current accuracy because blow 

threshold (including flatband), diffusion dominates over 

drift.  Figure 3(a) also gives the carrier space-charge drift 

current component, P1, to show the nearly equal value and 

hence the cancellation of P1 and P2, making the analytical 

approximation and numerical computation difficult because 

of subtracting two small numbers (<10 20), P1 ( P2)=P3, 

to give an even smaller number, P3 (<<10 30) in Fig. 4(a). 

Figures 4(a), 4(b) and 4(c) give another way to get the 

baseline (with the hope that some kinks and discontinuities 

could be easier discovered and eliminated in the earlier 

debugging of the FORTRAN), namely, using total drift 

current component P3B(B=9) from adding the integrated 

bulk-charge model P2B(B=9) to the exact analytical space- 
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Figure 7: Output characteristics (Drain Current versus 

Drain Voltage) of the two integration and four analytical 

compact-approximation models in the strong inversion 

range VGF =2.0V.  Same as Figure 2 except here versus 

drain voltage. (a) IDB. Percentage deviation, all in linear 

scale, of (b) total current from ID9,0, (c) drift component, P2B

from P29 and (d) diffusion component, D2B from D29.

charge P1B(B=9), P3B=P1B+P2B (B=9).  These are then 

compared with the numerically exact 1-term 2-D (x,y) 

integration of the total drift current, to be denoted by P00.  

Theoretically P00 must be equal to P39.  But in practice, it 

is not, as demonstrated by the computed data and their 

random fluctuations which are labeled by P39/P00 and 

100×[(P39/P00) 1] in Fig.4(b).  The difference comes from 

numerical precision limits of both the computer hardware 

(64-bit ALPHA-station running 64-bit OpenVMS and 64-

bit FORTRAN-90) and the software (64-bit FORTRAN-90 

and the 32-bit IMSL Fortran integration subroutine).  

Figure 4(c) shows that the difference between B=0 and B=9 

(the curve labeled by 9) is negligible, essential zero, from 

strong inversion (VGF=+4V, US0>2UF+2) down to deep 

subthreshold (VGF=+0.5V, US0 UF/2).  The difference 

becomes large (>100%) only below this normal operation 

range and in accumulation.  Figure 4(c) also shows that the 

total drift current, P36=P16+P26, of the new compact 

model, B=6, indeed gives excellent approximation to P00 

anticipated from the analytical 3-layer approximation made 

to evaluate the 2-D P26 integral. 
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Figures 5 and 6 show the two diffusion current 

components, space-charge-limited D1 and bulk-charge-

enhanced D2, which are counter parts of Figs. 3 and 4 of 

the drift current components just discussed in the preceding 

paragraph.  The conclusions are similar, noting also that 

diffusion current dominates below the threshold and in 

accumulation VGF<+1.262V (US0<2UF), and again the B=6 

compact model gives excellent results from accumulation to 

subthreshold, continues into strong inversion range, except 

a small flatband voltage range, although the deviation of the 

diffusion current is larger in the accumulation range 

| D36|/D00 < | 8%| than that of the drift current in the 

inversion range | P36|/P00 < | 2.2%|. 
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Figure 9 Transconductance vs gate voltage characteristics. 

(a) gm. Percentage deviation from gm9,0 (b) Semilog and (c) 

Linear.

3.3 Output Characteristics

Output characteristics of ID versus VDB are computed 

and presented in this section for one inversion point at VGF 

 VGB VFB = +2.0V > VGF-th(US0=2UF)=+1.262V and VSB

= 0.0V in Figs.7(a)-7(d), and one subthreshold point at VGF 

 VGB VFB = +1.00V at US0=3UF/2 and VSB = 0.0V in 

Figs.8(a)-8(d).   Consider first the strong inversion point, 

VGF=+2.0V, the four current components, D1, D2, P1 and 

P2, are shown Figs. 7(a) to 7(d).  These include the four 

analytical compact models (B=1,2,3,6) and the two exact 

integration models (B=9 for 9604139 and B=0 for 

6604139).  The total current and its four components are 

shown in Fig. 7(a) with the two diffusion components 

(space-charge and bulk-charge limited, D1 and D2) 

amplified by 10X to give visibility since they are about ten 
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gd9,0 (b) Semilog and (c) Linear. 
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times smaller in the inversion range (from using 

VGF=+2.0V).  Figure 7(b) gives the deviation of the total 

current of the four analytical compact models (B=1,2,3,6),  

the integrated 4-component baseline model (B=9), 

% DDB/DD9, and also the deviation of B=9 (9604139) from 

B=0 (6604139, labeled by 0).  Figures 7(c) shows the 

deviation of bulk-charge drift current component of the four 

analytical compact models (B=1,2,3,6) from that of the 

analytical baseline (B=9), % P2B/P29, and Fig. 7(d), that of 

the bulk-charge diffusion component, % D2B/D29.  For this 

strong inversion point, VGF=+2.0V > VGF-th (US0=2UF)

=+1.262V, as expected, these deviations are all small, even 

for the worse subthreshold-accumulation compact model, 

B=1, only about 2% for the total current, and 1.7% for the 

bulk-charge drift component P2.  The 8% deviation for the 

bulk-charge diffusion component D2, shown in Fig. 7(d), is 

small in magnitude in the total drain current since in this 

range, drift dominates diffusion by more than 10 times as 
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Figure 11:  Transconductance versus drain voltage 

characteristics. (a) gm. Percentage deviation from gm9,0 (b) 

Semilog and (c) Linear.

shown in Fig.7(a). Four similar figures, Fig.8(a)-(d), show 

the characteristics at the subthreshold point, VGF=+1.0V,

with a drain saturation current of about 10 10A/  and much 

sharper saturation at VDS ~ 4kT/q ~ 0.1V, and also larger 

deviation of the analytical compact models. 

3.4 Transfer-Output Conductance Characteristics 

The transfer (transconductance) gmb and output conductance 

characteristics gdb are shown in Figs. 9(a)-(c) and 10(a)-(c) 

as a function of gate voltage, VGB  VFB, and in Figs. 11(a)-

(c) and 12(a)-(c) as a function of drain/source voltage, VDS

at zero body bias VSB=0V.  The main result is that there is 

no discontinuity in these derivatives.  Another is the 

saturation of ID or excellent exponential VDS dependence of 

gdb at approximately VGS VDS as shown in Fig. 12(a).  A 

third is the small deviation of B=6. 
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3.5 Body, Substrate or Source Bias Effects 

The effects of body, substrate, or n++Source/p-Basewell 

bias are investigated.  The drain current versus source/body 

voltage, VSB, are presented in Fig.13 (a)-(d), which show 

that total currents IDB and their percentage deviations all 

decrease with increasing reverse body bias.  The drain 

current transfer characteristics, ID versus VGF, are presented 

in Fig.14(a)-(c).  In the inversion range, the body bias 

causes nearly just a shift of the gate voltage axis by 

VSB=+0.50V, as shown by the VSB=0.0V curve in Fig. 

14(a).  However, the current in the accumulation range 

shown in Fig. 14(a) is substantially lowered by the 0.5V 

body bias, from 10 23 to 10 30 A/ .
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diffusion component D2B/D29.

4 SUMMARY

In this paper, the accuracies of the baseline long-wide 

channel model of the three commonly used compact models 

are evaluated.  These compact models have used the 

surface-potential-based analytical approximation to the 

bulk-charge term, QB  |US|1/2 (9604131), |US 1|1/2

(9604132), and |US 1+exp(US)|1/2 (9604133).  Our results 

show that they are adequate in the inversion range but poor 

in the subthreshold and accumulation range.  An improved 

compact model (9604136) was tested which showed 

substantial improvement in the accumulation range, and 

gave adequate accuracy as baseline for advanced compact 

models.  No discontinuity in conductance and trans-

conductance was observed in these compact models. 
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MATHEMATICAL APPENDIX 

This appendix gives the formulas to compute the 

transconductance and output conductance of the four 

components of the 9604139 model.   

gmb=gnorm×(gm139P1+gm139P2+gm139D1+gm139D2)  (A1) 

gdb=gnorm×(gd139P1+gd139P2+gd139D1+gd139D2)  (A2) 

It is straightforward to obtain the transconductance and 

output conductance of the two space-charge-limited com-

ponents 9604139P1 and 9604139D1:  

gm139P1=[(UGB UFB USL)× USL/ UGB

(UGB UFB US0)× US0/ UGB]/UII
1/2

  (A3) 

gm139D1=( USL/ UGB US0/ UGB)/UII
1/2

   (A4) 

gd139P1=(UGB UFB USL)× USL/ UDB/UII
1/2

   (A5) 

gd139D1= USL/ UDB/UII
1/2

    (A6) 

Because the bulk-charge drift depressment 139P2 is a 

double integral, it is not trivial to obtain the corresponding 
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transconductance.   From (30), the following gm formula 

can be obtained: 
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From section 3, it has been known that the drain current 

components 139P1 and 139P2 cancel each other in the 

accumulation, deep-subthreshold, and subthreshold ranges, 

because the total drift current is very small compared with 

the total diffusion current.   Therefore, gm139P2 = 1

×gm139P1 is valid for these three regions.   Based on this, 

it is observed that (A8) works in these three regions.   

However, from the numerical slope of drain current 139P2, 

it was shown that A(8) deviates from the slope by one order 

of magnitude in the strong inversion range.  Thus, other gm 

formulations or formulas are needed.  From the original 

form of (30) as listed below  
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   (A9)

the correct formula of gm139P2 can be derived and is 
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From (33), the gm139D2 formula is:
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(A11)

A transformation of (A11) is needed to remove the 

numerical noise in the accumulation, deep-subthreshold, 

and subthreshold ranges. 

Similarly, the following gd formulas are derived from 

(30) and (33): 
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