FPGA-based Neutron Radiation Tolerant Microcontroller
D. Makowski, G. Jabtonski, M. Grecki, J. Mielczarek and A. Napieralski

Technical University of Lodz, Department of Microelectronics and Computer Science
Al. Politechniki 11, 93-590 Lo6dz, Poland, dmakow@dmcs.p.lodz.pl

1 ABSTRACT

The paper presents a design of radiation-tolerant mi-
crocontroller using the COTS electronic devices. The
microcontroller has been radiation-hardened by using
the techniques of memory scrubbing and triple modular
redundancy in the FPGA device. Using this design, a
system for monitoring susceptibility of SRAM memory
to neutron-induced single event upsets has been built.
The results of tests of this system are also presented.
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2 MOTIVATION

Modern research in high-energy particle physics calls
for new accelerator technologies. These sophisticated fa-
cilities require reliable electronic systems for its control
and monitoring. New high energy linear accelerators,
like X-Ray Free Electron Laser (X-FEL) and Interna-
tional Linear Collider (ILC), are planned to be built in
single tunnels, housing both the main beam accelera-
tion line and control electronics. Therefore, reliability
of the electronic systems at elevated radiation levels be-
comes of exceptional concern. In in order to achieve
long term reliable operation of the system used elec-
tronics must employ techniques allowing to tolerate lo-
cal disturbances in the circuit. The detrimental neutron
radiation is the dominating component of accelerator’s
radiation environment [1].

3 EFFECTS OF NEUTRON
RADIATION ON ELECTRONIC
CIRCUT OPERATION

Since neutrons have no electronic charge, they can-
not interact with semiconductor material atoms electri-
cally. However, they interact with semiconductor lattice
atoms through collisions. This effect is significant due to
high energy neutrons. Among results of the damage are
resistivity changes and bipolar transistor gain degrada-
tion [2]. The displacement damage may have reversible
nature. This self healing of a device is referred to as an-
nealing. It relies on thermal motion of the defects. On

the other hand, the migrating atoms may form stable
associations with impurity atoms in the semiconductor
structure. This will enhance the degradation, as such
associations are defects in the lattice.

The second type of neutron effect on electronic sys-
tems is an indirect one. Neutrons can induce ionisation
through secondary processes. The most important is
the generation of alpha particles within semiconductor
lattice due to the neutron capture reaction in Boron
(1°B) atoms, present in silicon chips as dopant and used
in passivation layers [3]. The product of the reaction
can be either "Li ion or *He ion. The “He ion (an al-
pha particle) is probably the agent for triggering Single
Event Effect (SEE) in silicon devices. SEEs can be sub-
divided into the firm and soft errors. Tolerance to firm
errors, possibly resulting in permanent damage to the
electronic device, can be obtained only by technologi-
cal means. Soft errors are much less severe than the
firm ones. There is no direct permanent damage done
to silicon devices due to soft SEE. The only impairment
caused, is on the functional and performance level of
the subject system. Digital systems are exposed to two
types of soft errors in the radiation environment. These
are Single Event Upset (SEU) and Single Event Tran-
sient (SET).

Single Event Upset (SEU) concerns data storage el-
ements. Memory cells such as Static Random Access
Memory (SRAM), Dynamic Random Access Memory
(DRAM) and Master Slave edge triggered Flip Flops
are subject to this detrimental phenomenon. The effect
of SEU is distortion of data stored in the cell, simply
called a bit flip. Apart from impairing the data stored
by a system or system’s state, the SEU can temporarily
transform system’s functionality. This is a severe prob-
lem of SRAM based Field Programmable Gate Array
(FPGA) devices. Single Event Transient affects com-
binatorial circuits only. It manifests itself by transient
changes of voltage levels on signal lines, either being in-
put to combinatorial blocks, or the outputs from them.
The SETSs are mainly caused by ionising particles, par-
ticularly heavy ions. If an SET is latched in a storage
element, it may be perceived as SEU [4], [5].
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4 SINGLE EVENT UPSET
MITIGATION TECHNIQUES

The techniques can be characterized in two cate-
gories [6]:

e technological, realisable in hardware only, usually
through modified fabrication processes of integrated
circuits

e software, which can yield a system or module,
which is radiation tolerant, but not hardened

This means, that the circuits operate properly up to
specified levels of radiation, possibly with some loss of
performance. The software techniques can be realised in
either hardware or software, depending on the platform
[7].

4.1 Hardening by technology

The most effective, robust techniques allowing to
harden electronic devices against radiation are those
applied at the lowest, technology, level. They involve
modified cells, being the building blocks of integrated
circuits, altered structure of transistors and properly
selected compounds for passivation of integrated cir-
cuits. The manufacturing technology can also decrease
circuit’s radiation sensitivity. Radiation resistance can
be achieved in Silicon On Insulator (SOI) technology
[6]. Tt enables complete elimination of latch up, due to
lack of parasitic thyristor.

4.2 Modular redundancy

The technique of modular redundancy is most widely
used in high reliability applications. There are various
kinds of this scheme, depending on the number of single
module replications. Thus, there is Double (DMR) and
Triple (TMR) Modular Redundancy - the most com-
mon, there may also be Quintuple Modular Redundancy
(QMR) or other of higher order (xMR) [6].

In DMR two entities function in parallel, perform-
ing the critical tasks in the same instants of time. The
outcomes of the task, coming from the two entities are
fed to a voter, or simply a comparator. Whenever the
results are different an error is signalled. The redundant
system has entered an erroneous state. It cannot recover
from it, as there is sufficient information only to detect
the error, no correction is possible. The two modules
or systems produced different results, but it is unknown
which one is correct. Therefore, the systems must be
restarted, in order to initialise them with known and
correct states.

TMR is more capable. In this scheme every critical
entity is tripled. A voter, more sophisticated than the
comparator in DMR scheme, is fed with outputs from

every entity. The voter decides on the result, by per-
forming majority voting. The limitation of TMR is that
it can correct single errors only. The result is as indi-
cated by at least two entities. If the representation of
outputs from the entities is binary, the voter is always
able to decide, it is never confused. Hence, the TMR
scheme is not only capable of detecting an error, but
also correcting it. TMR is able to sustain system’s op-
eration if an error is encountered.

4.3 Error detection and correction
codes

The techniques, which can be applied to registers
containing many related bits may involve using of Er-
ror Detection And Correction codes (EDAC) [8]. Fre-
quently used are Hamming codes, relying on adding re-
dundant bits to the stored word of information using
encoder. The redundancy is used at the decoder to de-
tect and correct errors. Hamming codes are capable of
detecting and correcting bit errors within a word. Ap-
plication of Hamming codes reduces the number of re-
dundant flip-flops at the cost of the more complicated
combinatorial EDAC circuit. This techniques can be
used alone or with the connection with method called
memory scrubbing [6].

4.4 Memory scrubbing

The general idea behind scrubbing is refreshing. It
is executed periodically. The memory, its block or other
data storage entity is sequentially read, word by word.
The employed mitigation technique is used to assess
whether data within read word is correct or not. In
the latter case, the error correction follows, according
to the mitigation technique. The corrected data is writ-
ten back and the process continues, until whole storage
space has been swept. The resource, which is being
refreshed, cannot be accessed by the system. This re-
quires the system to be halted if it claims the refreshed
resource. Another solution could be executing scrub-
bing partially, for resources not being currently used.
This, however, is not possible for a single-port memory
storing program code. Therefore, the system will suffer
some loss of performance if scrubbing is employed. It
is important to state, that scrubbing itself is vulnera-
ble to radiation, since an FSM handles it and should be
mitigated.

5 RADIATION TOLERANT
MICROCONTROLLER

5.1 Actel APA 600 family

The microcontroller has been implemented in a APA
600 FPGA. It is a Flash based-FPGA, which stores its
configuration in Flash memory [9]. The configuration
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is used directly from Flash during device’s operation.
Flash memory is immune to soft neutron induced ef-
fects, rendering the FPGA’s configuration resistant to
unpredictable change due to SEU. However, contents of
Flash may be erased by gamma radiation, if exposed
to it for extended time. The drawback of using Flash
based FPGA is lower maximum frequency, as compared
to SRAM-based devices.

5.2 Architecture of radiation tolerant
microcontroller

The microcontroller is based on the PIC16C57. The
basis for development was a description of processor core
written in VHDL, published under GNU General Public
License (GPL) on opencores.org. The basis core is sig-
nificantly limited according to PIC16C57 specification.
It is also impaired by several errors. Therefore, some
corrections were necessary [10].

5.3 Methods used to mitigate SEU

The resources in the microcontroller, which are sus-
ceptible to SEUs, can be divided into the two categories
[10]:

e components based on SRAM, both embedded in
the FPGA and external

e Finite State Machines (FSM)

For protection of SRAMs, the scrubbing technique
connected with use of the Hamming codes has been ap-
plied. This redundancy has to be embedded in the de-
scription of the design. No algorithm for automatic or
semi-automatic code generation has been implemented
for the purpose of this design.

The technique employed for protecting sequential com-
ponents, such as FSMs or others, which rely on storing
information in distributed memory elements, i.e. flip
flops, is TMR. In the design, every D type flip flop is
tripled. The three outputs are fed to the inputs of ma-
jority voting circuit. The majority voting circuit out-
puts the value indicated by at least two flip flops. The
voting circuit is glitch free. The radiation tolerance or
immunity of the majority voter is an important issue.
The circuit is not protected against the influence of ra-
diation. The SEU effect poses no threat on proper op-
eration of the circuit, since the voter is purely combina-
torial. The complete TMR D type flip flop is extended
with error indication output. Whenever one of the sub
flip flops is altered by SEU, the single error detection
output is set. This may provide information on the
level of vulnerability of distributed memory elements of
FPGA to SEU. Once a register is mitigated with TMR,
it should also be refreshed periodically, not to let errors
accumulate. This, however, is done automatically. The
clock is always supplied to the register’s flip flops, it is
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Figure 1: Radiation tolerant SRAM SEU detector

never gated or disconnected. If the condition for writing
a new value to the register is not met, the value from
output is written back on every active clock edge. This
provides sufficient rate of refreshing register’s contents.

5.4 Application of TRM in Libero IDE

The starting point in applying the TMR scheme is
description of a component in VHDL. The next step is
to synthesize the component. The process of synthe-
sis is handled by dedicated tools. It follows the process
of compilation, which transforms every description into
RTL description. The RTL description is then used as a
prerequisite for the synthesis process. During synthesis
the RTL is mapped to the resources available in a partic-
ular FPGA device . Therefore, the synthesis results in a
netlist, which can be either an industry standard EDIF
netlist or a structural VHDL description. The VHDL
description is much more human readable and can be
easily modified. Later, every flip-flop in a netlist has
to be replaced by an instance of the component, having
the same pins as a regular flip-flop, but containing three
flip-flop and a voter circuit. Special software tools have
been created for this purpose [10]. Then the circuit
is synthesized again, followed by a standard place and
route (Figure 2).

5.5 Exemplary application

Using the radiation-tolerant microcontroller the sys-
tem measuring the susceptibility of various SRAM mod-
ules has been implemented (see Figure 1). The system
consists of a microcontroller and UART implemented in
FPGA, external FLASH and SRAM program and data
memories and a SRAM memory under test [10]. The
memory is periodically tested for SEU-induced errors.
The results of the tests are periodically sent to a stan-
dard PC by a RS-485 or optical link.
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Figure 2: Classical and modified-radiation tolerant tech-
nique of designing FPGA-based digital circuits

6 RESULTS

The SRAM SEU detector was tested in DESY (Deu-
tsches Elektronen Synchrotron). The test was run from
the 30" of August 2005 till the 2"¢ of September 2005,
a total of 72 hours. The purpose of the test was to verify
the designed MCU’s behaviour under the mixed gamma
and neutron irradiation. The device was installed in
the LINAC II linear lepton accelerator. The SEU de-
tector was placed in about five meters distance from
the electron-positron converter, which generates high
number of neutrons. The monitoring station (PC com-
puter running Linux operating system) together with
transceiver was placed on the test bench, located in ra-
diation free environment. The communication between
PC and detector was carried over 50 meters long full
duplex 62.5/125 micron multimode optical fibre. The
bitrate was set to 9600 bps. No communication errors
were observed. During the test period, 500 SEUs have
been observed in the tested SRAM memory and five
SEUs in the UART transmitter.

7 CONCLUSIONS

The hardware platform was based on COTS com-
ponents only, none of the used electronic components
were hardened against radiation. This renders the in-
volved costs a fraction of a price of available radiation
tolerant or hardened programmable devices. However,
the designed system has been mitigated to SEUs only,
which might prove to be insufficient during long term
tests. On the other hand, VHDL or other HDL relies
on a fixed hardware technology, which is the only level,
on which the full suite of SEE mitigation and hardening
mechanisms can be adopted. The mitigating capabili-
ties of adopted techniques should be in future quantified
in terms of specific radiation doses, which the mitigated
circuit is able to withstand. The drawback of employed
techniques is compromised performance of the system.

Particularly the maximum attainable frequency is de-
creased when the TMR, scheme or Hamming Codes are
applied. The effect of Scrubbing is periodical pauses
in system’s operation, hence decreased computational
capability. The effects caused by TMR and Hamming
Codes could be potentially reduced if dedicated floor-
planning of the FPGA resources was involved, but gen-
erally the speed penalty is unavoidable if these tech-
niques are employed.
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